218
Views
3
CrossRef citations to date
0
Altmetric
Articles

Plant protein-based feeds and commercial feed enable isotopic tracking of aquaculture emissions into marine macrozoobenthic bioindicator species

, , &
Pages 261-273 | Received 26 Jun 2015, Accepted 01 Sep 2016, Published online: 20 Mar 2017

References

  • Naylor RL, Hardy RW, Bureau DP, et al. Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci USA. 2009;106:15103–15310. doi: 10.1073/pnas.0905235106
  • Holmer M. Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. Aquac Environ Interact. 2010;1:57–70. doi: 10.3354/aei00007
  • Naylor RL, Goldburg RJ, Primavera JH, et al. Effect of aquaculture on world fish supplies. Nature. 2000;405:1017–1024. doi: 10.1038/35016500
  • Frankic A, Hershner C. Sustainable aquaculture: developing the promise of aquaculture. Aquacult Int. 2003;11:517–530. doi: 10.1023/B:AQUI.0000013264.38692.91
  • Wever L, Krause G, Buck BH. Lessons from stakeholder dialogues on marine aquaculture in offshore wind farms: perceived potentials, constraints and research gaps. Mar Pol. 2015;51:251–259. doi: 10.1016/j.marpol.2014.08.015
  • Borja A, Franco J, Perez V. A marine Biotic Index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar Pollut Bull. 2000;40:1100–1114. doi: 10.1016/S0025-326X(00)00061-8
  • Kröncke I, Reiss H. Influence of macrofauna long-term natural variability on benthic indices used in ecological quality assessment. Mar Pollut Bull. 2010;60:58–68. doi: 10.1016/j.marpolbul.2009.09.001
  • Read P, Fernandes T. Management of environmental impacts of marine aquaculture in Europe. Aquaculture. 2003;226:139–163. doi: 10.1016/S0044-8486(03)00474-5
  • Price C, Black KD, Hargrave BT, et al. Marine cage culture and the environment: effects on water quality and primary production. Aquac Environ Interact. 2015;6:151–174. doi: 10.3354/aei00122
  • Kutti T, Ervik A, Hansen PK. Effects of organic effluents from a salmon farm on a fjord system. I. Vertical export and dispersal processes. Aquaculture. 2007;262:367–381. doi: 10.1016/j.aquaculture.2006.10.010
  • Hyland J, Balthis L, Karakassis I, et al. Organic carbon content of sediments as an indicator of stress in the marine benthos. Mar Ecol Prog Ser. 2005;295:91–103. doi: 10.3354/meps295091
  • Hargrave BT. Empirical relationships describing benthic impacts of salmon aquaculture. Aquac Environ Interact. 2010;1:33–46. doi: 10.3354/aei00005
  • Pearson TH, Rosenberg R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol. 1978;16:229–311.
  • European Commission. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008, establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official J Eur Union. 2008;L164:19–40.
  • Gray JS, Wu RS-S, Or YY. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Prog Ser. 2002;238:249–279. doi: 10.3354/meps238249
  • Iverson SJ, Field C, Don Bowen W, et al. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr. 2004;74:211–235. doi: 10.1890/02-4105
  • Pasquaud S, Lobry J, Elie P. Facing the necessity of describing estuarine ecosystems: a review of food web ecology study techniques. Hydrobiologia. 2007;588:159–172. doi: 10.1007/s10750-007-0660-3
  • Post DM. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 2002;83:703–718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  • Post DM, Layman CA, Arrington DA. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia. 2007;152:179–189. doi: 10.1007/s00442-006-0630-x
  • West JB, Bowen GJ, Cerling TE, et al. Stable isotopes as one of nature's ecological recorders. Trends Ecol Evol. 2006;21:408–414. doi: 10.1016/j.tree.2006.04.002
  • Vander Zanden MJ, Rasmussen JB. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology. 1999;80:1395–1404. doi: 10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2
  • France RL. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol Oceanogr. 1995;40:1310–1313. doi: 10.4319/lo.1995.40.7.1310
  • Focken U, Becker K. Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using δ13C data. Oecologia. 1998;115:337–343. doi: 10.1007/s004420050525
  • Felsing M, Telfer T, Glencross B. 15N-enrichment of an aquaculture diet and tracing of cage culture waste in an estuarine environment. J Appl Ichthyol. 2006;22:419–426. doi: 10.1111/j.1439-0426.2006.00744.x
  • Redmond KJ, Magnesen T, Hansen PK, et al. Stable isotopes and fatty acids as tracers of the assimilation of salmon fish feed in blue mussels (Mytilus edulis). Aquaculture. 2010;298:202–210. doi: 10.1016/j.aquaculture.2009.10.002
  • Callier M, Lefebvre S, Dunagan MK, et al. Shift in benthic assemblages and organisms’ diet at salmon farms: community structure and stable isotope analyses. Mar Ecol Prog Ser. 2013;483:153–167. doi: 10.3354/meps10251
  • Dolenec T, Lojen S, Kniewald G, et al. Nitrogen stable isotope composition as a tracer of fish farming in invertebrates Aplysina aerophoba, Balanus perforatus and Anemonia sulcata in central Adriatic. Aquaculture. 2007;262:237–249. doi: 10.1016/j.aquaculture.2006.11.029
  • Lin DT, Fong P. Macroalgal bioindicators (growth, tissue N, δ15N) detect nutrient enrichment from shrimp farm effluent entering Opunohu Bay, Moorea, French Polynesia. Mar Pollut Bull. 2008;56:245–249. doi: 10.1016/j.marpolbul.2007.09.031
  • Lojen S, Spanier E, Tsemel A, et al. δ15N as a natural tracer of particulate nitrogen effluents released from marine aquaculture. Mar Biol. 2005;148:87–96. doi: 10.1007/s00227-005-0063-9
  • Sara G, Scilipoti D, Mazzola A, et al. Effects of fish farming waste to sedimentary and particulate organic matter in a southern Mediterranean area (Gulf of Castellammare, Sicily): a multiple stable isotope study (δ13C and δ15N). Aquaculture. 2004;234:199–213. doi: 10.1016/j.aquaculture.2003.11.020
  • Ye L-X, Ritz D, Fenton G, et al. Tracing the influence on sediments of organic waste from a salmonid farm using stable isotope analysis. J Exp Mar Biol Ecol. 1991;145:161–174. doi: 10.1016/0022-0981(91)90173-T
  • Yokoyama H. Suspended culture of the sea cucumber Apostichopus japonicus below a Pacific oyster raft – potential for integrated multi-trophic aquaculture. Aquac Res. 2015;46:825–832. doi: 10.1111/are.12234
  • Yokoyama H, Tadokoro D, Miura M. Quantification of waste feed and fish faeces in sediments beneath yellowtail pens and possibility to reduce waste loading by co-culturing with sea cucumbers: an isotopic study. Aquac Res. 2015;46:918–927. doi: 10.1111/are.12247
  • Vizzini S, Mazzola A. Stable isotope evidence for the environmental impact of a land-based fish farm in the western Mediterranean. Mar Pollut Bull. 2004;49:61–70. doi: 10.1016/j.marpolbul.2004.01.008
  • Ehrich S, Adlerstein S, Brockmann U, et al. 20 years of German Small-Scale Bottom Trawl Survey (GSBTS): a review. Senck Marit. 2007;37:13–82. doi: 10.1007/BF03043206
  • Kusche H, Hillgruber N, Roessner Y, et al. The effect of different fish feed compositions on δ13C and δ15N signatures of farmed fish and its implications for tracking mariculture-derived organic load. In revision for Isot Environ Health Stud.
  • DeNiro MJ, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science. 1977;197:261–263. doi: 10.1126/science.327543
  • Sotiropoulos MA, Tonn WM, Wassenaar LI. Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish. 2004;13:155–160. doi: 10.1111/j.1600-0633.2004.00056.x
  • Mateo MA, Serrano O, Serrano L, et al. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia. 2008;157:105–115. doi: 10.1007/s00442-008-1052-8
  • Smedes F. Determination of total lipid using non-chlorinated solvents. Analyst. 1999;124:1711–1718. doi: 10.1039/a905904k
  • Schlechtriem C, Focken U, Becker K. Effect of different lipid extraction methods on δ13C of lipid and lipid-free fractions of fish and different fish feeds. Isot Environ Health Stud. 2003;39:135–140. doi: 10.1080/1025601031000113565
  • Boßelmann F, Romano P, Fabritius H, et al. The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim Acta. 2007;463:65–68. doi: 10.1016/j.tca.2007.07.018
  • Jacob U, Mintenbeck K, Brey T, et al. Stable isotope food web studies: a case for standardized sample treatment. Mar Ecol Prog Ser. 2005;287:251–253. doi: 10.3354/meps287251
  • Carabel S, Godínez-Domínguez E, Verísimo P, et al. An assessment of sample processing methods for stable isotope analyses of marine food webs. J Exp Mar Biol Ecol. 2006;336:254–261. doi: 10.1016/j.jembe.2006.06.001
  • Kolasinski J, Rogers K, Frouin P. Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef. Rapid Commun Mass Spectrom. 2008;22:2955–2960. doi: 10.1002/rcm.3694
  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: http://www.R-project.org/. 2014
  • Boos K, Gutow L, Mundry R, et al. Sediment preference and burrowing behaviour in the sympatric brittlestars Ophiura albida Forbes, 1839 and Ophiura ophiura (Linnaeus, 1758) (Ophiuroidea, Echinodermata). J Exp Mar Biol Ecol. 2010;393:176–181. doi: 10.1016/j.jembe.2010.07.021
  • Goldschmid A. Echinodermata, Stachelhäuter. In: Westheide W, Rieger R, editors. Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Stuttgart: Gustav Fischer Verlag; 1996. p. 778–834.
  • Dahm C. Growth, production and ecological significance of Ophiura albida and O. ophiura (Echinodermata: Ophiuroidea) in the German Bight. Mar Biol. 1993;116:431–437. doi: 10.1007/BF00350060
  • Kühne S, Rachor E. The macrofauna of a stony sand area in the German Bight (North Sea). Helgoländer Meeresunters. 1996;50:433–452. doi: 10.1007/BF02367159
  • Boos K, Franke H-D. Brittle stars (Echinodermata: Ophiuroidea) in the German Bight (North Sea) – species diversity during the past 130 years. J Mar Biol Assoc UK. 2006;86:1187–1197. doi: 10.1017/S0025315406014184
  • Blanchet-Aurigny A, Dubois SF, Quéré C, et al. Trophic niche of two co-occurring ophiuroid species in impacted coastal systems, derived from fatty acid and stable isotope analyses. Mar Ecol Prog Ser. 2015;525:127–141. doi: 10.3354/meps11169
  • Grey M, Boulding EG, Brookfield ME. Shape differences among boreholes drilled by three species of naticid gastropods. J Mollus Stud. 2005;71:253–256. doi: 10.1093/mollus/eyi035
  • Ziegelmeier E. Die Schnecken (Gastropoda Prosobranchia) der deutschen Meeresgebiete und brackigen Küstengewässer. Helgol Wiss Meeresunters. 1966;13:1–61. doi: 10.1007/BF01612655
  • Logan JM, Jardine TD, Miller TJ, et al. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol. 2008;77:838–846. doi: 10.1111/j.1365-2656.2008.01394.x
  • Kiljunen M, Grey J, Sinisalo T, et al. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol. 2006;43:1213–1222. doi: 10.1111/j.1365-2664.2006.01224.x
  • McConnaughey T, McRoy CP. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol. 1979;53:257–262. doi: 10.1007/BF00952434
  • Lynch-Stieglitz J, Stocker TF, Broecker WS, et al. The influence of air–sea exchange on the isotopic composition of oceanic carbon: observations and modeling. Glob Biogeochem Cycl. 1995;9:653–665. doi: 10.1029/95GB02574
  • McConnaughey TA, Burdett J, Whelan JF, et al. Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta. 1997;61:611–622. doi: 10.1016/S0016-7037(96)00361-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.