249
Views
10
CrossRef citations to date
0
Altmetric
Articles

Bladder wrack (Fucus vesiculosus) as a multi-isotope bio-monitor in an urbanized fjord of the western Baltic Sea

, , &
Pages 563-579 | Received 09 Jun 2016, Accepted 17 Jan 2017, Published online: 05 May 2017

References

  • Savage C. Tracing the influence of sewage nitrogen in a coastal ecosystem using stable nitrogen isotopes. AMBIO. 2005;34:145–150. doi: 10.1579/0044-7447-34.2.145
  • Struck U, Emeis K-C, Voss M, et al. Records of southern and central Baltic Sea eutrophication in δ13C and δ15N of sedimentary organic matter. Mar Geol. 2000;164:157–171. doi: 10.1016/S0025-3227(99)00135-8
  • Voss M, Larsen B, Leivuori M, et al. Stable isotope signals of eutrophication in Baltic Sea sediments. J Mar Syst. 2000;25:287–298. doi: 10.1016/S0924-7963(00)00022-1
  • Thomas H, Bozec Y, de Baar HJW, et al. The carbon budget of the North Sea. Biogeosciences. 2005;2:87–96. doi: 10.5194/bg-2-87-2005
  • Thomas H, Schiettecatte L-S, Suykens K, et al. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments. Biogeosciences. 2009;6:267–274. doi: 10.5194/bg-6-267-2009
  • Provoost PS, van Heuven S, Soetaert K, et al. Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences. 2010;7:3869–3878. doi: 10.5194/bg-7-3869-2010
  • Santos IR, Eyre BD, Hüttel M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar Coast Shelf Sci. 2012;98:1–15. doi: 10.1016/j.ecss.2011.10.024
  • Carballeira C, Viana IG, Carballeira A. δ15N values of macroalgae as an indicator of the potential presence of waste disposal from land-based marine fish farms. J Appl Phycol. 2013;25:97–107. doi: 10.1007/s10811-012-9843-z
  • Kaldy J. Using a macroalgal δ15N bioassay to detect cruise ship waste water effluent inputs. Mar Pollut Bull. 2011;62:1762–1771. doi: 10.1016/j.marpolbul.2011.05.023
  • Oakes JM, Eyre BD. Wastewater nitrogen and trace metal uptake by biota on a high-energy rocky shore detected using stable isotopes. Mar Pollut Bull. 2015;100:406–413. doi: 10.1016/j.marpolbul.2015.08.013
  • Schubert PR, Karez R, Reusch TBH, et al. Isotopic signatures of eelgrass (Zostera marina L.) as bioindicator of anthropogenic nutrient input in the western Baltic Sea. Mar Pollut Bull. 2013;72:64–70. doi: 10.1016/j.marpolbul.2013.04.029
  • Böttcher ME, Oelschläger B, Höpner T, et al. Sulfate reduction related to the early diagenetic degradation of organic matter and ‘black spot’ formation in tidal sandflats of the German Wadden Sea (southern North Sea): stable isotope (13C, 34S, 18O) and other geochemical results. Org Geochem. 1998;29:1517–1530. doi: 10.1016/S0146-6380(98)00124-7
  • Faganeli J, Malej A, Pezdic J, et al. C:N:P ratios and stable C isotopic ratios as indicators of sources of organic matter in the Gulf of Trieste (Northern Adriatic). Oceanol Acta. 1988;11:377–382.
  • Peterson BJ, Fry B. Stable isotopes in ecosystem studies. Annu Rev Ecol Syst. 1987;18:293–320. doi: 10.1146/annurev.es.18.110187.001453
  • Trust BA, Fry B. Stable sulphur isotopes in plants: a review. Plant Cell Environ. 1992;15:1105–1110. doi: 10.1111/j.1365-3040.1992.tb01661.x
  • Pehlke C, Selig U, Schubert H. Verbreitung und Ökophysiologie von Fucus-Beständen der Mecklenburger Bucht (südliche Ostseeküste) [Distribution and ecophysiology of bladder wrack (Fucus vesiculosus) in the Mecklenburg Bight (southern Baltic Sea)]. Rostock Meeresbiolog Beitr. 2008;20:123–142. German.
  • Reinke J. Algenflora der westlichen Ostsee deutschen Antheils. Eine systematisch-pflanzengeographische Studie. Kiel: Schmidt & Klaunig; 1889; German. Cited in [16].
  • HELCOM: diversity in the Baltic Sea – an integrated thematic assessment on biodiversity and nature conservation in the Baltic Sea. Helsinki: Helsinki Commission; 2009. (Baltic Sea Environmental Proceedings; 116B).
  • Kautsky H, Kautsky L, Kautsky N, et al. Studies on the Fucus vesiculosus community in the Baltic Sea. Acta Phytogeogr Suec. 1992;78:33–48.
  • Fürhaupter K, Grage A, et al. Kartierung mariner Pflanzenbestände im Flachwasser der Ostseeküste – Schwerpunkt Fucus und Zostera. Flintbek: Landesamt für Natur und Umwelt des Landes Schleswig-Holstein; 2008; (LANU SH-Gewässer; D22). German.
  • Magnus P. Bericht an das Königliche Preussische Ministerium für die landwirtschaftlichen Angelegenheiten von der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere in Kiel. Berlin: 1873. German. Cited in [16].
  • Rohde S, Hiebenthal C, Wahl M, et al. Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: effects of light deficiency and epibionts on growth and photosynthesis. Eur J Phycol. 2008;43:143–150. doi: 10.1080/09670260801901018
  • Savage C, Elmgren R. Macroalgal (Fucus vesiculous) δ15N values trace decrease in sewage influence. Ecol Appl. 2004;14:517–526. doi: 10.1890/02-5396
  • Mittermayr A, Hansen T, Sommer U. Simultaneous analysis of δ13C, δ15N and δ34S ratios uncovers food web relationships and the trophic importance of epiphytes in an eelgrass Zostera marina community. Mar Ecol Prog Ser. 2014;497:93–103. doi: 10.3354/meps10569
  • Mittermayr A, Fox SE, Sommer U. Temporal variation in stable isotope composition (δ13C, δ15N and δ34S) of a temperate Zostera marina food web. Mar Ecol Prog Ser. 2014;505:95–105. doi: 10.3354/meps10797
  • Wahl M, Buchholz B, Winde V, et al. A mesocosm concept for the simulation of near-natural shallow underwater climates: The Kiel Outdoor Benthocosms (KOB). Limnol Oceanogr Meth. 2015;13:651–663. doi: 10.1002/lom3.10055
  • Wahl M, Molis M, Hobday AJ, et al. The responses of brown macroalgae to environmental change from local to global scales: direct versus ecologically mediated effects. Perspect Phycol. 2015;2:11–29. doi: 10.1127/pip/2015/0019
  • Viana IG, Bode A. Stable nitrogen isotopes in coastal macroalgae: geographic and anthropogenic variability. Sci Total Environ. 2013;443:887–895. doi: 10.1016/j.scitotenv.2012.11.065
  • Schulz F. Trendanalyse der stofflichen Belastung schleswig-holsteinischer Fliessgewässer. In: Landesamt für Landwirtschaft, Naturschutz und Umwelt, Jahresberichte 1999; 2000. p. 59–65.
  • Nausch G, Bachor A, Petenati T, et al. Nährstoffe in den deutschen Küstengewässern der Ostsee und angrenzenden Gebieten [Nutrients in the German coastal waters of the Baltic Sea and adjacent areas]. Hamburg und Rostock: Bundesamt für Seeschifffahrt und Hydrographie (BSH); 2011; (Meeresumwelt Aktuell Nord- und Ostsee; 2011/1). German.
  • Hoppe H-G, Giesenhagen HC, Koppe R, et al. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea. Biogeosciences. 2013;10:4529–4546. doi: 10.5194/bg-10-4529-2013
  • Karstensen J, Liblik T, Fischer J, et al. Summer upwelling at the Boknis Eck time-series station (1982 to 2012) – a combined glider and wind data analysis. Biogeosciences. 2014;11:3603–3617. doi: 10.5194/bg-11-3603-2014
  • Dale AW, Sommer S, Bohlen L, et al. Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter (Boknis Eck, SW Baltic Sea): sensitivity to environmental variables. Estuar Coast Shelf Sci. 2011;95:14–28. doi: 10.1016/j.ecss.2011.05.016
  • Fry B. Stable isotope ecology. New York: Springer Science + Media; 2007.
  • Burt WJ, Thomas H, Hagens M, et al. Carbon sources in the North Sea evaluated by means of radium and stable carbon isotope tracers. Limnol Oceanogr. 2016;61:666–683. doi: 10.1002/lno.10243
  • Graiff A, Liesner D, Kasten U, et al. Temperature tolerance of western Baltic Sea Fucus vesiculosus – growth, photosynthesis and survival. J Exp Mar Biol Ecol. 2015;471:8–16. doi: 10.1016/j.jembe.2015.05.009
  • Böttcher ME, Schnetger B. Direct measurement of the content and isotopic composition of sulfur in black shales by means of combustion – isotope-ratio-monitoring mass spectrometry (C-irmMS). In: de Groot P, editor. Handbook of stable isotope analytical techniques, Vol. I. Amsterdam: Elsevier; 2004. p. 597–603.
  • Mann L, Vocke RD, Kelly WR. Revised δ34S reference values for IAEA sulfur isotope reference materials S-2 and S-3. Rapid Commun Mass Spectrom. 2009;23:1116–1124. doi: 10.1002/rcm.3977
  • Winde V, Böttcher ME, Escher P, et al. Tidal and spatial variations of DI13C and aquatic chemistry in a temperate tidal basin during winter time. J Mar Syst. 2014;129:396–404. doi: 10.1016/j.jmarsys.2013.08.005
  • Dickson AG, Afghan JD, Anderson GC. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem. 20;80:185–197. doi: 10.1016/S0304-4203(02)00133-0
  • Kowalski N, Dellwig O, Beck M, et al. A comparative study of manganese dynamics in the water column and sediments of intertidal systems of the North Sea. Estuar Coast Shelf Sci. 2012;100:3–17. doi: 10.1016/j.ecss.2011.03.011
  • Brand W, Coplen T. Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health Stud. 2012;48:393–409. doi: 10.1080/10256016.2012.666977
  • Casciotti KL, Sigman DM, Galanter Hastings M, et al. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem. 2002;74:4905–4912. doi: 10.1021/ac020113w
  • Sigman DM, Casciotti KL, Andreani M, et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem. 2001;73:4145–4153. doi: 10.1021/ac010088e
  • Raimonet M, Guillou G, Mornet F, et al. Marcoalgae δ15N values in well-mixed estuaries: indicator of anthropogenic nitrogen input or macroalgae metabolism? Estuar Coast Shelf Sci. 2013;119:126–138. doi: 10.1016/j.ecss.2013.01.011
  • Böhlke JK, Mroczkowski SJ, Coplen TB. Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate–water equilibration. Rapid Commun Mass Spectrom. 2003;17:1835–1846. doi: 10.1002/rcm.1123
  • Böttcher ME, Brumsack H-J, Dürselen C-D. The isotopic composition of modern seawater sulfate: I. coastal waters with special regard to the North Sea. J Mar Syst. 2007;67:73–82. doi: 10.1016/j.jmarsys.2006.09.006
  • Lewis E, Wallace DWR. Program developed for CO2 system calculations. Oak Ridge (TN): Carbon dioxide information center, Oak Ridge National Laboratory, U.S. Department of Energy; 1998; (ORNL/CDIAC–105).
  • Roy RN, Roy LN, Vogel KM, et al. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Mar Chem. 1993;44:249–267. doi: 10.1016/0304-4203(93)90207-5
  • Dickson AG. Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 – in synthetic seawater from 273.15 to 318.15 K. J Chem Thermodyn. 1990;22:113–127. doi: 10.1016/0021-9614(90)90074-Z
  • Viana IG, Bode A, Bartholomew M, et al. Experimental assessment of the macroalgae Ascophyllum nodosum and Fucus vesiculosus for monitoring N sources at different time-scales using stable isotope composition. J Exp Mar Biol Ecol. 2015;466:24–33. doi: 10.1016/j.jembe.2015.01.014
  • Niell FX. C:N ratio in some marine macrophytes and its possible ecological significance. Bot Mar. 1976;19:347–350. doi: 10.1515/botm.1976.19.6.347
  • Lapointe BE, Litter MM, Litter DS. Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. Estuaries. 1992;15:75–82. doi: 10.2307/1352712
  • Oczkowski A, Nixon S, Henry K, et al. Distribution and trophic importance of anthropogenic nitrogen in Narragansett Bay: an assessment using stable isotopes. Estuar Coast. 2008;31:53–69. doi: 10.1007/s12237-007-9029-0
  • Raven JA, Johnston AM, Kubler JE, et al. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol. 2002;29:355–378. doi: 10.1071/PP01201
  • Riera P, Stal LJ, Nieuwenhuize J, et al. Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon Bay, France) by carbon and nitrogen stable isotopes: importance of locally produced sources. Mar Ecol Prog Ser. 1999;187:301–307. doi: 10.3354/meps187301
  • Maberly SC, Raven JA, Johnston AM. Discrimination between 12C and 13C by marine plants. Oecologia. 1992;91:481–492. doi: 10.1007/BF00650320
  • Surif MB, Raven JA. Photosynthetic gas exchange under emersed conditions in eulittoral and normally submersed members of the Fucales and the Laminariales: interpretation in relation to C isotope ratio and N and water use efficiency. Oecologia. 1990;82:68–80. doi: 10.1007/BF00318535
  • Carballeira C, Rey-Asensio A, Carballeira A. Interannual changes in δ15N values in Fucus vesiculosus L. Mar Pollut Bull. 2014;85:141–145. doi: 10.1016/j.marpolbul.2014.06.010
  • Mercado JM, de los Santos CB, Pérez-Lloréns JL, et al. Carbon isotopic fractionation in macroalgae from Cádiz Bay (Southern Spain): comparison with other bio-geographic regions. Estuar Coast Shelf Sci. 2009;85:449–458. doi: 10.1016/j.ecss.2009.09.005
  • Viana IG, Fernández JA, Aboal JR, et al. Measurement of δ15N in macroalgae stored in an environmental specimen bank for regional scale monitoring of eutrophication in coastal areas. Ecol Indic. 2011;11:888–895. doi: 10.1016/j.ecolind.2010.12.004
  • Riera P, Stal LJ, Nieuwenhuize J. Heavy δ15N in intertidal benthic algae and invertebrates in the Scheldt estuary (the Netherlands): effect of river nitrogen inputs. Estuar Coast Shelf Sci. 2000;51:365–372. doi: 10.1006/ecss.2000.0684
  • Olsen YS, Fox SE, Teichberg M, et al. δ15N and δ13C reveal differences in carbon flow through estuarine benthic food webs in response to the relative availability of macroalgae and eelgrass. Mar Ecol Prog Ser. 2011;421:83–96. doi: 10.3354/meps08900
  • Mayer LM, Macko SA, Cammen L. Provenance, concentrations and nature of sedimentary organic nitrogen in the Gulf of Maine. Mar Chem. 1988;25:291–304. doi: 10.1016/0304-4203(88)90056-4
  • Viana IG, Bode A, Bartholomew M, et al. Experimental assessment of the macroalgae Ascophyllum nodosum and Fucus vesiculosus for monitoring N sources at different timescales using stable isotope composition. J Exp Mar Biol Ecol. 2015;466:24–33. doi: 10.1016/j.jembe.2015.01.014
  • Hayes JM. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar Geol. 1993;113:111–125. doi: 10.1016/0025-3227(93)90153-M
  • Smith FA, Walker NA. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 – and to carbon isotope discrimination. New Phytol. 1980;86:245–259. doi: 10.1111/j.1469-8137.1980.tb00785.x
  • Middeboe AL, Hansen PJ. Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Mar Biol Res. 2007;3:134–144. doi: 10.1080/17451000701320556
  • Thode HG, Shima M, Rees CE, et al. Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate and metal ions. Can J Chem. 1965;43:582–595. doi: 10.1139/v65-076
  • Deuser WG, Degens ET. Carbon isotope fractionation in the system CO2(gas)—CO2(aqueous)—HCO3–(aqueous). Nature. 1967;215:1033–1035. doi: 10.1038/2151033a0
  • Dailer ML, Knox RS, Smith JE, et al. Using δ15N values in algal tissue to map locations and potential sources of anthropogenic nutrient inputs on the island of Maui, Hawaii, USA. Mar Pollut Bull. 2010;60:655–671. doi: 10.1016/j.marpolbul.2009.12.021
  • Widory D, Oetelet-Giraud E, Brenot A, et al. Improving the management of nitrate pollution in water by the use of isotope monitoring: the δ15N, δ18O and δ11B triptych. Isot Environ Health Stud. 2013;49:29–47. doi: 10.1080/10256016.2012.666540
  • Böttcher ME, Huckriede H. First occurrence and stable isotope composition of authigenic γ-MnS in the central Gotland Deep (Baltic Sea). Mar Geol. 1997;137:201–205. doi: 10.1016/S0025-3227(96)00115-6
  • Böttcher ME, Lepland A. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: Evidence from stable isotopes and pyrite textures. J Mar Syst. 2000;25:299–312. doi: 10.1016/S0924-7963(00)00023-3
  • Holmer M, Kristensen E. Organic matter mineralization in an organic-rich sediment: experimental stimulation of sulfate reduction by fish food pellets. FEMS Microbiol Ecol. 1994;14:33–44. doi: 10.1111/j.1574-6941.1994.tb00088.x
  • Valdemarsen T, Quintana CO, Flindt MR, et al. Organic N and P in eutrophic fjord sediments – rates of mineralization and consequences for internal nutrient loading. Biogeosciences. 2015;12:1765–1779. doi: 10.5194/bg-12-1765-2015
  • Russell G. The seaweed flora of a young semi-enclosed sea: The Baltic. Salinity as a possible agent of flora divergence. Helgol Meeresunters. 1988;42:243–250. doi: 10.1007/BF02366044
  • Deines P, Langmuir D, Harmon RS. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim Cosmochim Acta. 1974;38:1147–1164. doi: 10.1016/0016-7037(74)90010-6
  • Böttcher ME. The stable isotopic geochemistry of the sulfur and carbon cycles in a modern karst environment. Isot Environ Health Stud. 1999;35:39–61. doi: 10.1080/10256019908234078
  • Michaelis J, Usdowski E, Menschel G. Partitioning of 13C and 12C on the degassing of CO2 and the precipitation of calcite; Rayleigh-type fractionation and a kinetic model. American J Sci. 1985;285:318–327. doi: 10.2475/ajs.285.4.318
  • Davis SN. Silica in streams and ground water. Am J Sci. 1964;262:870–891. doi: 10.2475/ajs.262.7.870
  • Ehlert C, Reckhardt A, Greskowiak J, et al. Transformation of silicon in a sandy beach ecosystem: insights from stable silicon isotopes from fresh and saline groundwaters. Chem Geol. 2016;440:207–218. doi: 10.1016/j.chemgeo.2016.07.015
  • Amberger A, Schmidt H-L. Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft. Geochim Cosmochim Acta. 1987;51:2699–2705. doi: 10.1016/0016-7037(87)90150-5
  • Granger J, Sigman DM, Needoba JA, et al. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol Oceanogr. 2004;49:1763–1773. doi: 10.4319/lo.2004.49.5.1763
  • Möbius J, Dähnke K. Nitrate drawdown and its unexpected isotope effect in the Danube estuarine transition zone. Limnol Oceanogr. 2015;60:1008–1019. doi: 10.1002/lno.10068
  • Lehmann MF, Bernasconi SM, Reichert P, et al. Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochim Cosmochim Acta. 2003;67:2529–2542. doi: 10.1016/S0016-7037(03)00085-1
  • Granger J, Sigman DM, Lehmann MF, et al. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 2008;53:2533–2545. doi: 10.4319/lo.2008.53.6.2533
  • Lehmann MF, Sigman DM, Berelson WM. Coupling the 15N/14N and 18O/16O of nitrate as a constraint on benthic nitrogen cycling. Mar Chem. 2004;88:1–20. doi: 10.1016/j.marchem.2004.02.001
  • Prokopenko MG, Sigman DM, Berelson WM, et al. Denitrification in anoxic sediments supported by biological nitrate transport. Geochim Cosmochim Acta. 2011;75:7180–7199. doi: 10.1016/j.gca.2011.09.023
  • Wunderlich A, Meckenstock R, Einsiedl F. Effect of different carbon substrates on nitrate stable isotope fractionation during microbial denitrification. Environ Sci Technol. 2012;46:4861–4868. doi: 10.1021/es204075b
  • Dähnke K, Thamdrup B. Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea. Biogeosciences. 2013;10:3079–3088. doi: 10.5194/bg-10-3079-2013
  • Deutsch B, Voss M. Anthropogenic nitrogen input traced by means of δ15N values in macroalgae: results from in-situ incubation experiments. Sci Total Environ. 2006;366:799–808. doi: 10.1016/j.scitotenv.2005.10.013
  • Cook FJ, Hick W, Gardner EA, et al. Export of acidity in drainage water from acid sulphate soils. Mar Pollut Bull. 2000;41:319–326. doi: 10.1016/S0025-326X(00)00138-7
  • Bond PL, Druschel GK, Banfield JF. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol. 2000;66:4962–4971. doi: 10.1128/AEM.66.11.4962-4971.2000
  • Aguilera A, Manrubia SC, Gómez F, et al. Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Rio Tinto (Southwestern Spain). Appl Environ Microbiol. 2006;72:5325–5330. doi: 10.1128/AEM.00513-06

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.