197
Views
5
CrossRef citations to date
0
Altmetric
Articles

Carbon isotopic signature reveals the geographical trend in methane consumption and production pathways in alpine ecosystems over the Qinghai–Tibetan Plateau

ORCID Icon, , , &
Pages 597-609 | Received 05 Jan 2016, Accepted 07 Feb 2017, Published online: 25 May 2017

References

  • IPCC. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: S Solomon, D Qin, M Manning, editor. Climate change 2007. Cambridge: Cambridge University Press; 2007. p. 996.
  • Chanton JP. The effect of gas transport mechanism on the isotope signature of methane in wetlands. Organ Geochem. 2005;36(5):753–768. doi: 10.1016/j.orggeochem.2004.10.007
  • Conrad R. Quantification of methanogenic pathways using stable carbon isotope signatures: a review and a proposal. Organ Geochem. 2005;36(5):739–752. doi: 10.1016/j.orggeochem.2004.09.006
  • Li W, Zhou X. Ecosystems of Qinghai-Xizang (Tibetan) Plateau and approach for their sustainable management. Series of studies on Qinghai-Xizang (Tibetan) plateau. Guangzhou: Guangdong Science & Technology Press; 1998. p. 56–101.
  • Wang G, Qian J, Cheng G, et al. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci Total Environ. 2002;291(1):207–217.
  • Kato T, Hirota M, Tang Y, et al. Spatial variability of CH4 and N2O fluxes in alpine ecosystems on the Qinghai-Tibetan Plateau. Atmos Environ. 2011;45(31):5632–5639. doi: 10.1016/j.atmosenv.2011.03.010
  • Kato T, Yamada K, Yoshida N, et al. Stable carbon isotopic evidence of methane consumption and production in three alpine ecosystems on the Qinghai–Tibetan plateau. Atmos Environ. 2013;77:338–347. doi: 10.1016/j.atmosenv.2013.05.010
  • Yamada K, Ozaki Y, Nakagawa F, et al. An improved method for measurement of the hydrogen isotope ratio of atmospheric methane and its application to a Japanese urban atmosphere. Atmos Environ. 2003;37(14):1975–1982. doi: 10.1016/S1352-2310(03)00030-X
  • Yamada K, Yoshida N, F N, et al. Source evaluation of atmospheric methane over western Siberia using double stable isotopic signatures. Organ Geochem. 2005;36(5):717–726. doi: 10.1016/j.orggeochem.2005.01.016
  • Coplen TB. Reporting of stable carbon, hydrogen, and oxygen isotopic abundances. reference and intercomparison materials for stable isotopes of light elements. IAEA-TECDOC-825. Vienna: International Atomic Energy Agency; 1995. p. 31–34.
  • Gonfiantini R, Stichler W, Rozanski K. Standards and intercomparison materials distributed by the international atomic energy agency for stable isotope measurements; reference and intercomparison materials for stable isotopes of light elements. IAEA-TECDOC-825. Vienna: International Atomic Energy Agency; 1995. p. 13–29.
  • Reeburgh WS, Hirsch AI, Sansone FJ, et al. Carbon kinetic isotope effect accompanying microbial oxidation of methane in boreal forest soils. Geochim Cosmochim Acta. 1997;61(22):4761–4767. doi: 10.1016/S0016-7037(97)00277-9
  • Tyler SC, Crill PM, Brailsford G. 13C/12C fractionation of methane during oxidation in a temperate forested soil. Geochim Cosmochim Acta. 1994;58(6):1625–1633. doi: 10.1016/0016-7037(94)90564-9
  • King SL, Quay PD, Lansdown JM. The 13C/12C kinetic isotope effect for soil oxidation of methane at ambient atmospheric concentrations. J Geophys Res. 1989;94(D15):18273–18277. doi: 10.1029/JD094iD15p18273
  • Snover AK, Quay PD. Hydrogen and carbon kinetic isotope effects during soil uptake of atmospheric methane. Glob Biogeochem Cycl. 2000;14(1):25–39. doi: 10.1029/1999GB900089
  • Mahieu K, De Visscher A, Vanrolleghem PA, et al. Modelling of stable isotope fractionation by methane oxidation and diffusion in landfill cover soils. Waste Manage. 2008;28(9):1535–1542. doi: 10.1016/j.wasman.2007.06.003
  • Preuss I, Knoblauch C, J G, et al. Improved quantification of microbial CH4 oxidation efficiency in Arctic wetland soils using carbon isotope fractionation. Biogeoscience. 2013;10(4):2539–2552. doi: 10.5194/bg-10-2539-2013
  • Templeton AS, Chu KH, Alvarez-Cohen L, et al. Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochim Cosmochim Acta. 2006;70:1739–1752. doi: 10.1016/j.gca.2005.12.002
  • Jang I, Lee SH, Zho KD, et al. Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biol Biochem. 2011;43:620–627. doi: 10.1016/j.soilbio.2010.11.032
  • Nakagawa F, Yoshida N, Nojiri N, et al. Production of methane from Alasses in eastern Siberia: implications from its 14C and stable isotopic compositions. Glob Biogeochem Cycl. 2002;16(3):1041–1055. doi: 10.1029/2000GB001384
  • Chasar LS, Chanton JP, Glaser EH, et al. Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the Glacial Lake Agassiz peatland complex. Ann Bot. 2000;86(3):655–663. doi: 10.1006/anbo.2000.1172
  • Chanton J, Chaser L, Glaser P, et al. Carbon and hydrogen isotopic effects on microbial methane from terrestrial environments. In: LB Flanagan, JR Ehleringer, DE Pataki, editor. Stable isotopes and biosphere–atmosphere interactions. New York (NY): Elsevier Press; 2004. p. 85–101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.