236
Views
6
CrossRef citations to date
0
Altmetric
Articles

Modelling the specific pathway of CH4 and CO2 formation using carbon isotope fractionation: an example for a boreal mesotrophic fen

, &
Pages 475-493 | Received 15 Jun 2017, Accepted 17 Mar 2018, Published online: 29 May 2018

References

  • Maltby E, Immirizi P. Carbon dynamics in peatlands and other wetland soils, regional and global perspectives. Chemosphere. 1993;27:999–1023. doi: 10.1016/0045-6535(93)90065-D
  • Jobbagy EJ, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Applic. 2000;10:423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
  • Kirschke S, Bousquet P, Ciais P, et al. Three decades of global methane sources and sinks. Nat Geosci. 2013;6:813–823. doi: 10.1038/ngeo1955
  • Matthews E, Fung I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycl. 1987;1:61–86. doi: 10.1029/GB001i001p00061
  • Chen Y, Prinn RG. Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. J Geophys Res. 2006;101:D10307. doi:10.1029/2005JD006058.
  • Juottonen H. Archaea, Bacteria, and methane production along environmental gradients in fens and bogs [academic dissertation]. Helsinki: University of Helsinki; 2008.
  • Brown A, Kauri T, Kushner DJ, et al. Measurement and significance of cellulose in peat soils. Can J Soil Sci. 1988;68:681–685. doi: 10.4141/cjss88-065
  • Pankratov TA, Ivanova AO, Dedysh SN, et al. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ Microbiol. 2011;13:1800–1814. doi: 10.1111/j.1462-2920.2011.02491.x
  • Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Molecul Biol Rev. 2002;66:506–577. doi: 10.1128/MMBR.66.3.506-577.2002
  • Popp TJ, Chanton JP, Whiting GA, et al. Methane stable isotope distribution at a Carex dominated fen in north central Alberta. Glob Biogeochem Cycl. 1999;13:1063–1077. doi: 10.1029/1999GB900060
  • Chasar LS, Chanton JP, Glaser PH, et al. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland. Glob Biogeochem Cycl. 2000;14:1095–1108. doi: 10.1029/1999GB001221
  • Kotsyurbenko OR, Chin KJ, Glagolev MV, et al. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol. 2004;6:1159–1173. doi: 10.1111/j.1462-2920.2004.00634.x
  • Kotsyurbenko OR, Friendrich MW, Simankova MV, et al. Shift from acetoclastic to H2-dependent methanogenesis in a West-Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol. 2007;73:2344–2348. doi: 10.1128/AEM.02413-06
  • Zinder SH. Physiological ecology of methanogens. In: Ferry JG, editor. Methanogenesis – ecology, physiology, biochemistry & genetics. New York (NY): Chapman & Hill; 1993. p. 128–206.
  • Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem. 2005;36:739–752. doi: 10.1016/j.orggeochem.2004.09.006
  • Schnürer A, Houwen FP, Svensson BH. Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch Microbiol. 1994;162:70–74. doi: 10.1007/BF00264375
  • Vavilin VA, Rytov SV. Dynamic changes of apparent fractionation factor to describe transition to syntrophic acetate oxidation during cellulose and acetate methanization. Isot Environ Health Stud. 2017;52:135–156.
  • Grossin-Debattista J. Fractionnements isotopiques (13C/12C) engendrés par la methanogenèse: apports pour la compreéhension des processus de biodégradation lors de la digestion anaérobie [thèse de doctorat]. Bordeaux: Université Bordeaux; 2011; p. 1.
  • Conrad R, Bak F, Seitz HJ, et al. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol Ecol. 1989;62:285–293. doi: 10.1111/j.1574-6968.1989.tb03382.x
  • Kotsyurbenko OR, Glagolev MV, Nozhevnikova AN, et al. Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol Ecol. 2001;38:153–159. doi: 10.1111/j.1574-6941.2001.tb00893.x
  • Craig H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta. 1957;12:133–149. doi: 10.1016/0016-7037(57)90024-8
  • Whiticar MJ, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation – isotope evidence. Geochim Cosmochim Acta. 1986;50:693–709. doi: 10.1016/0016-7037(86)90346-7
  • Vavilin VA, Rytov SV, Conrad R. Modelling methane formation in sediments of tropical lakes focusing on syntrophic acetate oxidation: dynamic and static carbon isotope equations. Ecol Modell. 2017;363:81–95. doi: 10.1016/j.ecolmodel.2017.08.024
  • Galand PE, Yrjala K, Conrad R. Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences. 2010;7:3893–3900. doi: 10.5194/bg-7-3893-2010
  • Vavilin VA. Estimating evolution of δ13CH4 during methanogenesis in the boreal peatland ecosystems based on stoichiometric chemical reactions, microbial dynamics and stable carbon isotope fractionation. Ecol Modell. 2012;240:84–92. doi: 10.1016/j.ecolmodel.2012.04.023
  • Galand PE, Saarnio S, Fritze H, et al. Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol. 2002;42:441–449. doi: 10.1111/j.1574-6941.2002.tb01033.x
  • Juottonen H, Galand PE, Tuittila ES, et al. Methanogen communities and bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol. 2005;7:1547–1557. doi: 10.1111/j.1462-2920.2005.00838.x
  • Batstone DJ, Keller J, Angelidaki I., et al. Anaerobic digestion model No.1 (ADM1). London: IWA; 2002.
  • Segers R. Methane production and methane consumption: a review of process underlying methane fluxes. Biogeochemistry. 1998;41:23–51. doi: 10.1023/A:1005929032764
  • Graef SP, Andrew JF. Stability and control of anaerobic digestion. J Water Pollut Control Fed. 1974;46:666–683.
  • Klimenko AV, Zorin VM. Handbook on heat power engineering and heat engineering. 3rd edition Moscow: Moscow Energy Institute; 1999. Russian.
  • MathWorks Inc. The MathWorks, Inc. Natick, MA; 1984. www.matworks.com.
  • Razavi S, Gupta HV. What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in earth and environmental systems models. Water Resour Res. 2015;51:3070–3092. doi: 10.1002/2014WR016527
  • Bridgham SD, Cadillo-Quiroz H, Keller JK, et al. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol. 2013;19:1325–1346. doi: 10.1111/gcb.12131
  • Saarnio S. Carbon gas (CO2, CH4) exchange in a boreal oligotrophic mire – effects of raised CO2 and NH4NO3 supply [PhD thesis]. Joensuu: University of Joensuu; 1999. (Publications in Sciences; 56).
  • Vavilin VA, Lokshina LY, Rytov SV, et al. Modelling methanogenesis during anaerobic conversion of complex organic matter at low temperatures. Water Sci Technol. 1997;36(6-7):531–538. doi: 10.2166/wst.1997.0633
  • Lokshina LY, Vavilin VA. Kinetic analysis of the key stages of low temperature methanogenesis. Ecol Modell. 1999;117:285–303. doi: 10.1016/S0304-3800(99)00008-3
  • Lokshina LY, Vavilin VA, Kettunen RH, et al. Evaluation of kinetic coefficients using integrated Monod and Haldane models for low-temperature acetoclastic methanogenesis. Water Res. 2001;35:2913–2922. doi: 10.1016/S0043-1354(00)00595-9
  • Penning H, Claus P, Casper P, et al. Carbon isotope fractionation during acetoclastic methanogenesis by Methanosaeta concilii in culture and a lake sediment. Appl Environ Microbiol. 2006;72:5648–5652. doi: 10.1128/AEM.00727-06
  • Conrad R, Klose M. Stable carbon isotope discrimination in rice field soil during acetate turnover by syntrophic acetate oxidation or acetoclastic methanogenesis. Geochim Cosmochim Acta. 2011;75:1531–1539. doi: 10.1016/j.gca.2010.12.019
  • Galand PE, Fritze H, Conrad R, et al. Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl Environ Microbiol. 2005;71:2195–2198. doi: 10.1128/AEM.71.4.2195-2198.2005
  • Whiticar MJ. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol. 1999;161:291–314. doi: 10.1016/S0009-2541(99)00092-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.