184
Views
7
CrossRef citations to date
0
Altmetric
Articles

Snow gauge undercatch and its effect on the hydrogen and oxygen stable isotopic composition of precipitation

ORCID Icon
Pages 404-418 | Received 06 Nov 2018, Accepted 04 Apr 2019, Published online: 21 May 2019

References

  • Friedman I. Deuterium content of natural waters and other substances. Geochim Cosmochim Acta. 1953;4(1):89–103. doi: 10.1016/0016-7037(53)90066-0
  • Epstein S, Mayeda T. Variation of O-18 content of waters from natural sources. Geochim Cosmochim Acta. 1953;4:213–224. doi: 10.1016/0016-7037(53)90051-9
  • Craig H. Isotopic variations in meteoric waters. Science. 1961;133(3465):1702–1703. doi: 10.1126/science.133.3465.1702
  • Jasechko S, Birks SJ, Gleeson T, et al. The pronounced seasonality of global groundwater recharge. Water Resour Res. 2014;50(11):8845–8867. doi: 10.1002/2014WR015809
  • Evaristo J, Jasechko S, McDonnell JJ. Global separation of plant transpiration from groundwater and streamflow. Nature. 2015;525(7567):91. doi: 10.1038/nature14983
  • Tetzlaff D, Seibert J, McGuire K, et al. How does landscape structure influence catchment transit time across different geomorphic provinces? Hydrol Process. 2009;23(6):945–953. doi: 10.1002/hyp.7240
  • Goodison BE. Accuracy of Canadian snow gage measurements. J Appl Meteor. 1978;17(10):1542–1548. doi: 10.1175/1520-0450(1978)017<1542:AOCSGM>2.0.CO;2
  • Kochendorfer J, Rasmussen R, Wolff M, et al. The quantification and correction of wind induced precipitation measurement errors. Hydrol Earth Syst Sci. 2017;21(4):1973. doi: 10.5194/hess-21-1973-2017
  • Sevruk B. International workshop on precipitation measurement I: Preface. Hydrol Process. 1991;5(3):229–232. doi: 10.1002/hyp.3360050302
  • Mekis E, Vincent LA. An overview of the second generation adjusted daily precipitatioń dataset for trend analysis in Canada. Atmos Ocean. 2011;49(2):163–177. doi: 10.1080/07055900.2011.583910
  • Larson LW, Peck EL. Accuracy of precipitation measurements for hydrologic modeling. Water Resour Res. 1974;10(4):857–863. doi: 10.1029/WR010i004p00857
  • Kochendorfer J, Nitu R, Wolff M, et al. Analysis of single-alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-spice. Hydrol Earth Syst Sci. 2017;21(7):3525. doi: 10.5194/hess-21-3525-2017
  • Wada Y, Bierkens MF. Sustainability of global water use: past reconstruction and future projections. Environ Res Lett. 2014;9(10):104003. doi: 10.1088/1748-9326/9/10/104003
  • Kundzewicz Z, Mata L, Arnell NW, et al. The implications of projected climate change for freshwater resources and their management. Hydrol Sci J. 2008;53(1):3–10. doi: 10.1623/hysj.53.1.3
  • Portmann FT, Döll P, Eisner S, et al. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ Res Lett. 2013;8(2):024023. doi: 10.1088/1748-9326/8/2/024023
  • Schewe J, Heinke J, Gerten D, et al. Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci USA. 2014;111(9):3245–3250. doi: 10.1073/pnas.1222460110
  • Sokratov SA, Golubev VN. Snow isotopic content change by sublimation. J Glaciol. 2009;55(193):823–828. doi: 10.3189/002214309790152456
  • Neumann TA, Albert MR, Lomonaco R, et al. Experimental determination of snow sublimation rate and stable-isotopic exchange. Ann Glaciol. 2008;49(1):1–6. doi: 10.3189/172756408787814825
  • Moser H, Stichler W. Environmental isotopes in ice and snow. In: Fritz P, Fontes JC, editor. Handbook of environmental isotope geochemistry. Vol. 1. Amsterdam: Elsevier; 1980. p. 141–178.
  • IAEA/WMO. Global network of isotopes in precipitation. The GNIP database. Vienna: International Atomic Energy Agency (IAEA); 2018. Available from: http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html#citing.
  • Yurtsever Y, Gat J. Atmospheric waters. In: Gat JR, Gonfiantini R, editor. Stable isotopes hydrology. Deuterium and oxygen-18 in the water cycle. Vienna: International Atomic Energy Agency (IAEA); 1981. p. 103–142. (Technical Report Series; 210).
  • Rożanski K, Araguás-Araguás L, Gonfiantini R. Isotopic patterns in precipitation. In: Swart PK, Lohmann KC, Mckenzie J, Savin S, editor. Climate change in continental isotopic records. Washington, DC: American Geophysical Union; 1993. p. 1–36. (Geophysical Monograph Series; 78).
  • Craig H, Gordon LI. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E, editor. Stable isotopes in oceanographic studies and paleotemperatures. Pisa: Consiglio nazionale delle richerche, Laboratorio de geologia nucleare; 1965. p. 9–72.
  • Gonfiantini R, Wassenaar LI, Araguas-Araguas L, et al. A unified Craig–Gordon isotope model of stable hydrogen and oxygen isotope fractionation during fresh or saltwater evaporation. Geochim Cosmochim Acta. 2018;235:224–236. doi: 10.1016/j.gca.2018.05.020
  • Maulé C, Chanasyk D, Muehlenbachs K. Isotopic determination of snow-water contribution to soil water and groundwater. J Hydrol. 1994;155(1–2):73–91. doi: 10.1016/0022-1694(94)90159-7
  • Jasechko S, Wassenaar LI, Mayer B. Isotopic evidence for widespread cold-season-biased groundwater recharge and young streamflow across central Canada. Hydrol Process. 2017;31(12):2196–2209. doi: 10.1002/hyp.11175
  • Beria H, Larsen JR, Ceperley NC, et al. Understanding snow hydrological processes through the lens of stable water isotopes. Wiley Interdiscip Rev Water. 2018;5(6):e1311. doi: 10.1002/wat2.1311
  • Smith CD, van der Kamp G, Arnold L, et al. Measuring precipitation with a geolysimeter. Hydrol Earth Syst Sci. 2017;21(10):5263. doi: 10.5194/hess-21-5263-2017
  • Gröning M, Lutz H, Roller-Lutz Z, et al. A simple rain collector preventing water reevaporation dedicated for δ18O and δ2H analysis of cumulative precipitation samples. J Hydrol. 2012;448:195–200. doi: 10.1016/j.jhydrol.2012.04.041
  • Devine KA, Mekis E. Field accuracy of Canadian rain measurements. Atmosphere–Ocean. 2008;46(2):213–227. doi: 10.3137/ao.460202
  • Metcalfe J, Routledge B, Devine K. Rainfall measurement in Canada: changing observational methods and archive adjustment procedures. J Climate. 1997;10(1):92–101. doi: 10.1175/1520-0442(1997)010<0092:RMICCO>2.0.CO;2
  • IAEA. Statistical treatment of data on environmental isotopes in precipitation. Vienna: International Atomic Energy Agency; 1992 . (Technical Series Report; 331).
  • Carr JR. Orthogonal regression: a teaching perspective. Int J Math Educ Sci Technol. 2012;43(1):134–143. doi: 10.1080/0020739X.2011.573876
  • Hughes CE, Crawford J. A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data. J Hydrol. 2012;464:344–351. doi: 10.1016/j.jhydrol.2012.07.029
  • Crawford J, Hughes CE, Lykoudis S. Alternative least squares methods for determining the meteoric water line, demonstrated using GNIP data. J Hydrol. 2014;519:2331–2340. doi: 10.1016/j.jhydrol.2014.10.033
  • Penna D, Stenni B, Sanda M, et al. Evaluation of between-sample memory effects in the analysis of δ2H and δ18O of water samples measured by laser spectroscopes. Hydrol Earth Syst Sci. 2012;16(10):3925–3933. doi: 10.5194/hess-16-3925-2012
  • R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015. Available from: https://www.R-project.org/.
  • Harris R, Carder A. Rain and snow gauge comparisons. Can J Earth Sci. 1974;11(4):557–564. doi: 10.1139/e74-050
  • Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16(4):436–468. doi: 10.3402/tellusa.v16i4.8993
  • Wang XL, Xu H, Qian B, et al. Adjusted daily rainfall and snowfall data for Canada. Atmosphere–Ocean. 2017;55(3):155–168. doi: 10.1080/07055900.2017.1342163
  • Pham SV, Leavitt PR, McGowan S, et al. Spatial and temporal variability of prairie lake hydrology as revealed using stable isotopes of hydrogen and oxygen. Limnol Oceanogr. 2009;54(1):101–118. doi: 10.4319/lo.2009.54.1.0101
  • Hendry MJ, Barbour SL, Novakowski K, et al. Paleohydrogeology of the cretaceous sediments of the williston basin using stable isotopes of water. Water Resour Res. 2013;49(8):4580–4592. doi: 10.1002/wrcr.20321
  • Bowen GJ, Wassenaar LI, Hobson KA. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia. 2005;143(3):337–348. doi: 10.1007/s00442-004-1813-y
  • Bowen GJ, Ehleringer JR, Chesson LA, et al. Stable isotope ratios of tap water in the contiguous United States. Water Resour Res. 2007;43(3):W03419. doi: 10.1029/2006WR005186
  • Flockhart D, Brower LP, Ramirez MI, et al. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years. Glob Change Biol. 2017;23(7):2565–2576. doi: 10.1111/gcb.13589
  • Flockhart DT, Acorn JH, Hobson KA, et al. Documenting successful recruitment of monarch butterflies (Lepidoptera: Nymphalidae) at the extreme northern edge of their range. Can Entomol. 2019;151:49–57. doi: 10.4039/tce.2018.52
  • Terzer S, Wassenaar L, Araguás-Araguás L, et al. Global isoscapes for δ18O and δ2H in precipitation: improved prediction using regionalized climatic regression models. Hydrol Earth Syst Sci. 2013;17(11):4713. doi: 10.5194/hess-17-4713-2013
  • Peng H, Mayer B, Harris S, et al. A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus B. 2004;56(2):147–159. doi: 10.1111/j.1600-0889.2004.00094.x
  • Thériault JM, Rasmussen R, Ikeda K, et al. Dependence of snow gauge collection efficiency on snowflake characteristics. J Appl Meteorol Climatol. 2012;51(4):745–762. doi: 10.1175/JAMC-D-11-0116.1
  • Geiger R. Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Alte Serie Vol. 3. Berlin: Springer; 1954 . Klassifikation der Klimate nach W. Köppen; pp. 603–607.
  • Environment and Climate Change Canada. Historical data – climate – Environment and Climate Change Canada, 2009. http://climate.weather.gc.ca/historical_data/search_historic_data_e.html].
  • Hendry M, Wassenaar L. Implications of the distribution of δD in pore waters for groundwater flow and the timing of geologic events in a thick aquitard system. Water Resour Res. 1999;35(6):1751–1760. doi: 10.1029/1999WR900046
  • Hendry MJ, Barbour SL, Zettl J, et al. Controls on the long-term downward transport of δ2H of water in a regionally extensive, two-layered aquitard system. Water Resour Res. 2011;47(6):1–13. doi: 10.1029/2010WR010044
  • Hendry M, Schmeling E, Wassenaar L, et al. Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method. Hydrol Earth Syst Sci. 2015;19(11):4427. doi: 10.5194/hess-19-4427-2015
  • Fritz P, Drimmie R, Frape S, et al. The isotopic composition of precipitation and groundwater in Canada. In: Proceedings isotope techniques in water resources development; 30 March–3 April 1987. Vienna: International Atomic Energy Agency; 1987. p. 539–550. (IAEA Proceedings Series).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.