649
Views
13
CrossRef citations to date
0
Altmetric
Articles

Sources of primary production to Arctic bivalves identified using amino acid stable carbon isotope fingerprintingFootnote*

ORCID Icon, , , , , & show all
Pages 366-384 | Received 26 Nov 2018, Accepted 02 May 2019, Published online: 11 Jun 2019

References

  • Campbell RG, Sherr EB, Ashjian CJ, et al. Mesozooplankton prey preference and grazing impact in the western Arctic Ocean. Deep-Sea Res Part II-Top Stud Oceanogr. 2009;56:1274–1289. doi: 10.1016/j.dsr2.2008.10.027
  • Schonberg S V, Clarke JT, Dunton KH. Distribution, abundance, biomass and diversity of benthic infauna in the Northeast Chukchi Sea, Alaska: relation to environmental variables and marine mammals. Deep-Sea Res Part II-Top Stud Oceanogr. 2014;102:144–163. doi: 10.1016/j.dsr2.2013.11.004
  • Dunton KH, Weingartner T, Carmack EC. The nearshore western Beaufort Sea ecosystem: circulation and importance of terrestrial carbon in Arctic coastal food webs. Prog Oceanogr. 2006;71:362–378. doi: 10.1016/j.pocean.2006.09.011
  • Piepenburg D. Recent research on Arctic benthos: common notions need to be revised. Polar Biol. 2005;28:733–755. doi: 10.1007/s00300-005-0013-5
  • Blais M, Ardyna M, Gosselin M, et al. Contrasting interannual changes in phytoplankton productivity and community structure in the coastal Canadian Arctic Ocean. Limnol Oceanogr. 2017;62:2480–2497. doi: 10.1002/lno.10581
  • Neukermans G, Oziel L, Babin M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob Change Biol. 2018;24:2545–2553. doi: 10.1111/gcb.14075
  • Lavoie D, Denman KL, Macdonald RW. Effects of future climate change on primary productivity and export fluxes in the Beaufort Sea. J Geophys Res. 2010;115:C04018. doi: 10.1029/2009JC005493
  • Labe Z, Magnusdottir G, Stern H. Variability of Arctic sea ice thickness using PIOMAS and the CESM large ensemble. J Climate. 2018;31:3233–3247. doi: 10.1175/JCLI-D-17-0436.1
  • Farquharson LM, Mann DH, Swanson DK, et al. Temporal and spatial variability in coastline response to declining sea-ice in northwest Alaska. Mar Geol. 2018;404:71–83. doi: 10.1016/j.margeo.2018.07.007
  • Carmack EC, Yamamoto-Kawai M, Haine TWN, et al. Freshwater and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res Biogeosci. 2016;121:675–717. doi: 10.1002/2015JG003140
  • Arrigo KR, Van Dijken GL. Secular trends in Arctic Ocean net primary production. J Geophys Res Ocean. 2011;116:C09011.
  • Arrigo KR, Perovich DK, Pickart RS, et al. Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep-Sea Res Part II-Top Stud Oceanogr. 2014;105:1–16. doi: 10.1016/j.dsr2.2014.03.018
  • Woodgate RA, Weingartner TJ, Lindsay R. Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys Res Lett. 2012;39:L24603. doi: 10.1029/2012GL054092
  • Matsuno K, Yamaguchi A, Hirawake T, et al. Year-to-year changes of the mesozooplankton community in the Chukchi Sea during summers of 1991, 1992 and 2007, 2008. Polar Biol. 2011;34:1349–1360. doi: 10.1007/s00300-011-0988-z
  • Grebmeier JM. Shifting patterns of life in the Pacific Arctic and sub-Arctic seas. Annu Rev Mar Sci. 2012;4:63–78. doi: 10.1146/annurev-marine-120710-100926
  • Gradinger R. Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep-Sea Res Part II-Top Stud Oceanogr. 2009;56:1201–1212. doi: 10.1016/j.dsr2.2008.10.016
  • McMahon KW, Ambrose WG, Johnson BJ, et al. Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. Mar Ecol Prog Ser. 2006;310:1–14. doi: 10.3354/meps310001
  • Macdonald RW. Arctic estuaries and ice: a positive–negative estuarine couple. In: Lewis EL, Jones EP, Lemke P, Terry D. ProwseTD, Wadhams P, editors. The freshwater budget of the Arctic Ocean. Dordrecht: Springer; 2000. p. 383–407. (NATO Science Series ASEN2; 70).
  • Peterson BJ, Peterson BJ, Mcclelland J, et al. Trajectory shifts in the Arctic and subarctic freshwater cycle. Science. 2006;313:1061–1066. doi: 10.1126/science.1122593
  • Lantuit H, Overduin PP, Couture N, et al. The Arctic Coastal Dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuar Coast. 2012;35:383–400. doi: 10.1007/s12237-010-9362-6
  • Serreze MC, Holland MM, Stroeve J. Perspectives on the Arctic’s shrinking sea-ice cover. Science. 2007;315:1533–1536. doi: 10.1126/science.1139426
  • Harris CM, McTigue ND, McClelland JW, et al. Do high Arctic coastal food webs rely on a terrestrial carbon subsidy? Food Web. 2018;15:e00081. doi: 10.1016/j.fooweb.2018.e00081
  • Young JK, Black BA, Clarke JT, et al. Abundance, biomass and caloric content of Chukchi Sea bivalves and association with Pacific walrus (Odobenus rosmarus divergens) relative density and distribution in the northeastern Chukchi Sea. Deep-Sea Res Part II-Top Stud Oceanogr. 2017;144:125–141. doi: 10.1016/j.dsr2.2017.04.017
  • Danielson SL, Eisner L, Ladd C, et al. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas. Deep-Sea Res Part II-Top Stud Oceanogr. 2017;135:7–26. doi: 10.1016/j.dsr2.2016.05.024
  • Dunton KH, Grebmeier JM, Trefry JH. Hanna Shoal: an integrative study of a high Arctic marine ecosystem in the Chukchi Sea. Deep-Sea Res Part II-Top Stud Oceanogr. 2017;144:1–5. doi: 10.1016/j.dsr2.2017.09.001
  • Iken K, Bluhm B, Dunton K. Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep-Sea Res Part II-Top Stud Oceanogr. 2010;57:71–85. doi: 10.1016/j.dsr2.2009.08.007
  • Tu KL, Blanchard AL, Iken K, et al. Small-scale spatial variability in benthic food webs in the northeastern Chukchi Sea. Mar Ecol Prog Ser. 2015;528:19–37. doi: 10.3354/meps11216
  • Feder HM, Iken K, Blanchard AL, et al. Benthic food web structure in the southeastern Chukchi Sea: an assessment using δ13C and δ15N analyses. Polar Biol. 2011;34:521–532. doi: 10.1007/s00300-010-0906-9
  • Divine LM, Iken K, Bluhm BA. Regional benthic food web structure on the Alaska Beaufort Sea shelf. Mar Ecol Prog Ser. 2015;531:15–32. doi: 10.3354/meps11340
  • Gannes LZ, O’Brien DM, Del Rio CM. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology. 1997;78:1271–1276. doi: 10.1890/0012-9658(1997)078[1271:SIIAEA]2.0.CO;2
  • Phillips DL, Inger R, Bearhop S, et al. Best practices for use of stable isotope mixing models in food-web studies. Can J Zool. 2014;92:823–835. doi: 10.1139/cjz-2014-0127
  • Budge SM, Wooller MJ, Springer AM, et al. Tracing carbon flow in an Arctic marine food web using fatty acid-stable isotope analysis. Oecologia. 2008;157:117–129. doi: 10.1007/s00442-008-1053-7
  • Oxtoby LE, Horstmann L, Budge SM, et al. Resource partitioning between Pacific walruses and bearded seals in the Alaska Arctic and sub-Arctic. Oecologia. 2017;184:385–398. doi: 10.1007/s00442-017-3883-7
  • Oxtoby LE, Budge SM, Iken K, et al. Feeding ecologies of key bivalve and polychaete species in the Bering Sea as elucidated by fatty acid and compound-specific stable isotope analyses. Mar Ecol Prog Ser. 2016;557:161–175. doi: 10.3354/meps11863
  • Wang SW, Springer AM, Budge SM, et al. Carbon sources and trophic relationships of ice seals during recent environmental shifts in the Bering Sea. Ecol Appl. 2016;26:830–845. doi: 10.1890/14-2421
  • Wang SW, Budge SM, Iken K, et al. Importance of sympagic production to Bering Sea zooplankton as revealed from fatty acid-carbon stable isotope analyses. Mar Ecol Prog Ser. 2015;518:31–50. doi: 10.3354/meps11076
  • Wang SW, Budge SM, Gradinger RR, et al. Fatty acid and stable isotope characteristics of sea ice and pelagic particulate organic matter in the Bering Sea: tools for estimating sea ice algal contribution to Arctic food web production. Oecologia. 2014;174:699–712. doi: 10.1007/s00442-013-2832-3
  • Schollmeier T, Oliveira ACM, Wooller MJ, et al. Tracing sea ice algae into various benthic feeding types on the Chukchi Sea shelf. Polar Biol. 2018;41:207–224. doi: 10.1007/s00300-017-2182-4
  • Larsen T, Ventura M, Andersen N, et al. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS One. 2013;8:e73441. doi: 10.1371/journal.pone.0073441
  • Larsen T, Lee Taylor D, Leigh MB, et al. Stable isotope fingerprinting: a novel method for identifying plant, fungal, or bacterial origins of amino acids. Ecology. 2009;90:3526–3535. doi: 10.1890/08-1695.1
  • McMahon KW, Thorrold SR, Houghton LA, et al. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia. 2016;180:809–821. doi: 10.1007/s00442-015-3475-3
  • Larsen T, Wooller MJ, Fogel ML, et al. Can amino acid carbon isotope ratios distinguish primary producers in a mangrove ecosystem? Rapid Commun Mass Spectrom. 2012;26:1541–1548. doi: 10.1002/rcm.6259
  • Larsen T, Bach LT, Salvatteci R, et al. Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: effects of algal growth conditions and sedimentary diagenesis. Biogeosciences. 2015;12:4979–4992. doi: 10.5194/bg-12-4979-2015
  • Ellis GS, Herbert G, Hollander D. Reconstructing carbon sources in a dynamic estuarine ecosystem using oyster amino acid δ13C values from shell and tissue. J Shellfish Res. 2014;33:217–225. doi: 10.2983/035.033.0121
  • Misarti N, Gier E, Finney B, et al. Compound-specific amino acid δ15N values in archaeological shell: assessing diagenetic integrity and potential for isotopic baseline reconstruction. Rapid Commun Mass Spectrom. 2017;31:1881–1891. doi: 10.1002/rcm.7963
  • Wheeler AP. Mechanisms of molluscan shell formation. In: Bonucci E, editor. Calcification in biological systems. Boca Raton, FL: CRC Press; 1992. p. 179–216.
  • O’Donnell TH, Macko SA, Wehmiller JF. Stable carbon isotope composition of amino acids in modern and fossil Mercenaria. Org Geochem. 2007;38:485–498. doi: 10.1016/j.orggeochem.2006.06.010
  • McMahon KW, Williams B, Guilderson TP, et al. Calibrating amino acid δ13C and δ15N offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives. Geochim Cosmochim Acta. 2018;220:261–275. doi: 10.1016/j.gca.2017.09.048
  • Parnell AC, Phillips DL, Bearhop S, et al. Bayesian stable isotope mixing models. Environmetrics. 2013;24:387–399.
  • Arrigo KR, van Dijken GL. Continued increases in Arctic Ocean primary production. Prog Oceanogr. 2015;136:60–70. doi: 10.1016/j.pocean.2015.05.002
  • Booth BC, Horner RA. Microalgae on the Arctic ocean section, 1994: species abundance and biomass. Deep-Sea Res Part II-Top Stud Oceanogr. 1997;44:1607–1622. doi: 10.1016/S0967-0645(97)00057-X
  • Elliott Smith EA, Harrod C, Newsome SD. The importance of kelp to an intertidal ecosystem varies by trophic level: insights from amino acid δ13C analysis. Ecosphere. 2018;9:e02516. doi: 10.1002/ecs2.2516
  • Grebmeier JM. Cruise Report: USCGC Healy 12–01, August 9–25, 2012 Hanna Shoal – Northern Chukchi Sea; 2012.
  • Cooper LW. Cruise Report: USCGC Healy 13–01, July 29–August 15, 2013 Chukchi Sea; 2013.
  • Dunton KH. Chukchi Sea Offshore Monitoring in Drilling Area (COMIDA): Hanna Shoal Ecosystem Study Final Report; 2016.
  • Iken K. Arctic Marine Biodiversity Observing Network (AMBON) 2015 cruise report; 2015.
  • Silfer JA, Engel MH, Macko SA, et al. Stable carbon isotope analysis of amino acid enantiomers by conventional isotope ratio mass spectrometry and combined gas chromatography/isotope ratio mass spectrometry. Anal Chem. 1991;63:370–374. doi: 10.1021/ac00004a014
  • R Development Core Team R. R: A language and environment for statistical computing [Internet]. R Found. Stat. Comput; 2011. Available from: http://www.r-project.org.
  • Price MN, Zane GM, Kuehl JV, et al. Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics. PLoS Genet. 2018;14:e1007147. doi: 10.1371/journal.pgen.1007147
  • Ruggiero MA, Gordon DP, Orrell TM, et al. A higher level classification of all living organisms. PLoS One. 2015;10:e0119248. doi: 10.1371/journal.pone.0119248
  • Hobson KA. Trophic relationships among high Arctic seabirds: insights from tissue-dependent stable-isotope models. Mar Ecol Prog Ser. 1993;95:7–18. doi: 10.3354/meps095007
  • Hobson KA, Fisk A, Karnovsky N, et al. A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep-Sea Res Part II-Top Stud Oceanogr. 2002;49:5131–5150. doi: 10.1016/S0967-0645(02)00182-0
  • Babb DG, Galley RJ, Asplin MG, et al. Multiyear sea ice export through the Bering Strait during winter 2011–2012. J Geophys Res Ocean. 2013;118:5489–5503. doi: 10.1002/jgrc.20383
  • Barrett SA, Stringer WJ. Growth mechanisms of “Katie’s Floeberg”. Arct Alp Res. 1978;10:775–783. doi: 10.2307/1550744
  • Eicken H, Gradinger R, Gaylord A, et al. Sediment transport by sea ice in the Chukchi and Beaufort Seas: increasing importance due to changing ice conditions? Deep-Sea Res Part II-Top Stud Oceanogr. 2005;52:3281–3302. doi: 10.1016/j.dsr2.2005.10.006
  • Feder HM, Naidu AS, Jewett SC, et al. The northeastern Chukchi Sea: benthos–environmental interactions. Mar Ecol Prog Ser. 1994;111:171–190. doi: 10.3354/meps111171
  • Macdonald TA, Burd BJ. Macdonald VI, et al. Taxonomic and feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, British Columbia. Sidney (BC): Fisheries and Ocean Canada; 2010; (Canadian Technical Report of Fisheries and Aquatic Sciences; 2874).
  • Moss DK, Surge D, Khaitov V. Lifespan and growth of Astarte borealis (Bivalvia) from Kandalaksha Gulf, White Sea, Russia. Polar Biol. 2018;41:1359–1369. doi: 10.1007/s00300-018-2290-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.