345
Views
5
CrossRef citations to date
0
Altmetric
Stable isotopes in ancient and contemporary enviroments

Stable isotope analysis of white-tailed deer teeth as a paleoenvironmental proxy at the Maya site of La Joyanca, northwestern Petén, GuatemalaFootnote*

ORCID Icon, , & ORCID Icon
Pages 344-365 | Received 15 Oct 2018, Accepted 03 Jun 2019, Published online: 04 Jul 2019

References

  • Douglas P, Brenner M, Curtis JH. Methods and future directions for paleoclimatology in the Maya lowlands. Glob Planet Change. 2016;138:3–24. doi: 10.1016/j.gloplacha.2015.07.008
  • Aimers J, Iannone G. The dynamics of ancient Maya developmental history. In: Iannone G, editor. The great Maya droughts in cultural context. Boulder, CO: University Press of Colorado; 2014. p. 21–50.
  • Aimers J, Hodell D. Societal collapse: drought and the Maya. Nature. 2011;479:44–45. doi: 10.1038/479044a
  • Demarest AA. Ancient Maya: the rise and fall of a rainforest civilization. Cambridge: Cambridge University Press; 2004.
  • Douglas P, Pagani M, Canuto MA, et al. Drought, agricultural adaptation, and sociopolitical collapse in the Maya lowlands. Proc Natl Acad Sci USA. 2015;112:5607–5612. doi: 10.1073/pnas.1419133112
  • Hodell DA, Curtis JH, Brenner M. Possible role of climate in the collapse of Classic Maya civilization. Nature. 1995;375:391–394. doi: 10.1038/375391a0
  • Medina-Elizalde M, Burns SJ, Lea DW, et al. High resolution stalagmite climate record from the Yucatan Peninsula spanning the Maya terminal classic period. Earth Planet Sci Lett. 2010;298:255–262. doi: 10.1016/j.epsl.2010.08.016
  • Wahl D, Hansen RD, Byrne R, et al. Holocene climate variability and anthropogenic impacts from Lago Paixban, a perennial wetland in Peten, Guatemala. Glob Planet Change. 2016;138:70–81. doi: 10.1016/j.gloplacha.2015.09.011
  • Wahl D, Estrada-Belli F, Anderson L. A 3400 year paleolimnological record of prehispanic human–environment interactions in the Holmul region of the southern Maya lowlands. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;379–380:17–31. doi: 10.1016/j.palaeo.2013.03.006
  • Rosenmeier MF, Hodell DA, Brenner M, et al. A 4000-year lacustrine record of environmental change in the southern Maya lowlands, Peten, Guatemala. Quat Res. 2002;57:183–190. doi: 10.1006/qres.2001.2305
  • Curtis JH, Brenner M, Hodell DA, et al. A multi-proxy study of Holocene environmental change in the Maya lowlands of Peten, Guatemala. J Paleolimnol. 1998;19:139–159. doi: 10.1023/A:1007968508262
  • Wahl D, Byrne R, Anderson L. An 8700 year paleoclimate reconstruction from the southern Maya lowlands. Quat Sci Rev. 2014;103:19–25. doi: 10.1016/j.quascirev.2014.08.004
  • Webster JW, Brook GA, Railsback LB, et al. Stalagmite evidence from Belize indicating significant droughts at the time of Preclassic abandonment, the Maya Hiatus, and the Classic Maya collapse. Palaeogeogr Palaeoclimatol Palaeoecol. 2007;250:1–17. doi: 10.1016/j.palaeo.2007.02.022
  • Akers PD, Brook GA, Railsback LB, et al. An extended and higher-resolution record of climate and land use from stalagmite MC01 from Macal Chasm, Belize, revealing connections between major dry events, overall climate variability, and Maya sociopolitical changes. Palaeogeogr Palaeoclimatol Palaeoecol. 2016;459:268–288. doi: 10.1016/j.palaeo.2016.07.007
  • Kennett DJ, Breitenbach SFM, Aquino VV, et al. Development and disintegration of Maya political systems in response to climate change. Science. 2012;338:788–791. doi: 10.1126/science.1226299
  • Hodell DA, Brenner M, Curtis JH. Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat Sci Rev. 2005;24:1413–1427. doi: 10.1016/j.quascirev.2004.10.013
  • Curtis JH, Hodell DA, Brenner M. Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quat Res. 1996;46:37–47. doi: 10.1006/qres.1996.0042
  • Hodell DA, Brenner M, Curtis JH, et al. Climate change on the Yucatan Peninsula during the Little Ice Age. Quat Res. 2005;63:109–121. doi: 10.1016/j.yqres.2004.11.004
  • Leyden BW, Brenner M, Dahlin BH. Cultural and climatic history of Coba, a lowland Maya city in Quintana Roo, Mexico. Quat Res. 1998;49:111–122. doi: 10.1006/qres.1997.1941
  • Evans NP, Bauska TK, Gázquez-Sánchez F, et al. Quantification of drought during the collapse of the classic Maya civilization. Science. 2018;361:498–501. doi: 10.1126/science.aas9871
  • Kuil L, Carr G, Viglione A, et al. Conceptualizing socio-hydrological drought processes: The case of the Maya collapse. Water Resour Res. 2016;52:6222–6242. doi: 10.1002/2015WR018298
  • Aimers JJ. What Maya collapse? Terminal Classic variation in the Maya lowlands. J Archaeol Res. 2007;15:329–377. doi: 10.1007/s10814-007-9015-x
  • Aimers JJ. Environment and agency in the ancient Maya collapse. In: Giosan L, Fuller DQ, Nicoll K, Flad RK, Clift PD, editor. Climates, landscapes, and civilizations. Washington, DC: American Geophysical Union; 2013. p. 27–34.
  • Iannone G. The great Maya droughts in cultural context: case studies in resilience and vulnerability. Boulder (CO): University Press of Colorado; 2014.
  • Connin SL, Betancourt J, Quade J. Late Pleistocene C4 plant dominance and summer rainfall in the southwestern United States from isotopic study of herbivore teeth. Quat Res. 1998;50:179–193. doi: 10.1006/qres.1998.1986
  • Higgins P, MacFadden BJ. “Amount effect” recorded in oxygen isotopes of Late Glacial horse (Equus) and bison (Bison) teeth from the Sonoran and Chihuahuan Deserts, Southwestern United States. Palaeogeogr Palaeoclimatol Palaeoecol. 2004;206:337–353. doi: 10.1016/j.palaeo.2004.01.011
  • Hoppe KA. Correlation between the oxygen isotope ratio of North American bison teeth and local waters: Implication for paleoclimatic reconstructions. Earth Planet Sci Lett. 2006;244:408–417. doi: 10.1016/j.epsl.2006.01.062
  • Reinhard E, de Torres T, O’Neil JR. 18O/16O ratios of cave bear tooth enamel; a record of climate variability during the Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol. 1996;126:45–59. doi: 10.1016/S0031-0182(96)00069-7
  • Wang Y, Kromhout E, Zhang C, et al. Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau; implications for paleoclimate and paleoelevation reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol. 2008;260:359–374. doi: 10.1016/j.palaeo.2007.11.012
  • Carr HS. Precolumbian Maya exploitation and management of deer populations. In: Fedick S, editor. Managed mosaic: Ancient Maya agriculture and resource use. Salt Lake City: University of Utah Press; 1996. p. 251–261.
  • Emery KF, Thornton EK, Cannarozzi NR, et al. Archaeological animals of the southern Maya highlands: Zooarchaeology of Kaminaljuyu. In: Götz CM, Emery KF, editor. The archaeology of Mesoamerican animals. Atlanta, GA: Lockwood Press; 2013. p. 381–416. (Archaeobiology; 1).
  • Götz CM, Stanton TW. The use of animals by the pre-hispanic Maya of the northern lowlands. In: Götz CM, Emery KF, editor. The archaeology of Mesoamerican animals. Atlanta, GA: Lockwood Press; 2013. p. 191–232. (Archaeobiology; 1).
  • Montero-López C. Inferring the archaeological context through taphonomy: The use of the white-tailed deer (Odocoileus virginianus) in Chinikihá, Chiapas. In: Götz CM, Emery KF, editor. The archaeology of Mesoamerican animals. Atlanta, GA: Lockwood Press; 2013. p. 315–350. (Archaeobiology; 1).
  • Pohl M. Ritual continuity and transformation in Mesoamerica: Reconstructing the ancient Maya cuch ritual. Am Antiq. 1981;46:513–529. doi: 10.2307/280598
  • Pohl M, Bloom PR. Prehistoric lowland Maya environment and subsistence economy. Cambridge (MA): Peabody Museum of Archaeology and Ethnology, Harvard University: Distributed by Harvard University Press; 1985.
  • White CD, Pohl MED, Schwarcz HP, et al. Isotopic evidence for Maya patterns of deer and dog use at preclassic Colha. J Archaeol Sci. 2001;28:89–107. doi: 10.1006/jasc.1999.0560
  • Emery KF, Wright EL, Schwarcz HP. Isotopic analysis of ancient deer bone: biotic stability in collapse period Maya land-use. J Archaeol Sci. 2000;27:537–550. doi: 10.1006/jasc.1999.0491
  • Emery KF, Kennedy Thornton E. A regional perspective on biotic change during the Classic Maya occupation using zooarchaeological isotopic chemistry. Quatern Int. 2008;191:131–143. doi: 10.1016/j.quaint.2007.11.015
  • Arnauld MC. La Joyanca (La Libertad, Guatemala): antigua ciudad maya del noroeste del Petén. Ciudad de Guatemala: Centro Francés de Estudios Mexicanos y Centroamericanos, Asociación Tikal, Centro de Investigaciones Regionales de Mesoamérica; 2004. Spanish.
  • Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16:436–468. doi: 10.3402/tellusa.v16i4.8993
  • Lachniet MS, Patterson WP. Oxygen isotope values of precipitation and surface waters in northern Central America (Belize and Guatemala) are dominated by temperature and amount effects. Earth Planet Sci Lett. 2009;284:435–446. doi: 10.1016/j.epsl.2009.05.010
  • Repussard A. Stable carbon and oxygen isotopes in bone – Tracing droughts during the Maya era using archaeological deer remain [Master thesis]. Hamilton, Ontario: School of Geography and Earth Sciences, McMaster University; 2009.
  • Arnauld MC, Lemonnier E, Forne M, et al. Millenary Maya societies: Past crises and resilience. In: Arnauld MC, Breton A, editor. The rise and fall of a secondary polity: La Joyanca. Guatemala). Paris: Musée du quai Branly; 2013. p. 148–168.
  • Arnauld MC, Lemonnier E, Forné M, et al. Early to Late Classic population mobility in the Maya site of La Joyanca and hinterlands, northwestern Petén, Guatemala. J Anthropol Archaeol. 2017;45:15–37. doi: 10.1016/j.jaa.2016.10.002
  • Carozza JM, Galop D, Metailie JP, et al. Landuse and soil degradation in the southern Maya lowlands, from Pre-Classic to Post-Classic times: The case of La Joyanca (Peten, Guatemala). Geodin Acta. 2007;20:195–207. doi: 10.3166/ga.20.195-207
  • Fleury S, Malaizé B, Giraudeau J, et al. Impacts of Mayan land use on Laguna Tuspán watershed (Petén, Guatemala) as seen through clay and ostracode analysis. J Archaeol Sci. 2014;49:372–382. doi: 10.1016/j.jas.2014.05.032
  • Weber M. Ecología y Manejo de Fauna Silvestre en méxico. In: Valdez R, Ortega A, editor. Temazates y venados cola blanca tropicales. Texcoco, Estado de México: Colegio de Postgraduados; 2014. p. 421–452. Spanish.
  • Reyna-Hurtado R, Tanner GW. Habitat preferences of ungulates in hunted and nonhunted areas in the Calakmul forest, Campeche, Mexico. Biotropica. 2005;37:676–685. doi: 10.1111/j.1744-7429.2005.00086.x
  • Sáenz J, Vaughan C. Ambito de hogar y utilización de hábitat de dos grupos de venados Cola Blanca Odocoileus virginianus (Artiodactyla: Cervidae) reubicados en un ambiente tropical. Rev Biol Trop. 1998;46: 1185–1197. Spanish.
  • Bello J, Gallina S, Equihua M. Movements of the white-tailed deer and their relationship with precipitation in northeastern Mexico. Interciencia. 2004;29:35–361.
  • Plata FX, Ebergeny S, Resendiz JL, et al. Palatability and chemical composition of feeds ingested in captivity by Yucatan white-tailed deer (Odocoileus virginianus yucatanensis). Arch Med Vet. 2009;41:123–129. doi: 10.4067/S0301-732X2009000200005
  • Ramı´rez RG, Haenlein GFW, Garcı´a-Castillo CG, et al. Protein, lignin and mineral contents and in situ dry matter digestibility of native Mexican grasses consumed by range goats. Small Rumin Res. 2004;52:261–269. doi: 10.1016/S0921-4488(03)00257-8
  • Arceo G, Mandujano S, Gallina S, et al. Diet diversity of white-tailed deer (Odocoileus virginianus) in a tropical dry forest in Mexico. Mammalia. 2005;69:159–168. doi: 10.1515/mamm.2005.014
  • DiMare MI. Hábitos alimentarios del venado cola blanca en la Isla San Lucas, Puntarenas, Costa Rica. In: Vaughan C, Rodriguez M, editor. Ecología y manejo del venado cola blanca en méxico y Costa Rica. Heredia, Costa Rica: Universidad Nacional; 1994. p. 73–89 (Conservación biológica y desarrollo sostenible; no. 2). Spanish.
  • Jacobson HC. Deer. In: Gerlach D, Atwater S, Schnell J, editor. Feeding behavior. Mechanisburg: Stackpole Books; 1994. p. 192–198.
  • Brokx PA. Age determination of Venezuelan white-tailed deer. J Wildl Manage. 1972;36:1060–1067. doi: 10.2307/3799233
  • DeYoung CA. Aging live white-tailed deer on southern ranges. J Wildl Manage. 1989;53:519–523. doi: 10.2307/3809171
  • Lockard GR. Further studies of dental annuli for aging white-tailed deer. J Wildl Manage. 1972;36:46–55. doi: 10.2307/3799187
  • Severinghaus CW. Tooth development and wear as criteria of age in white-tailed deer. J Wildl Manage. 1949;13:195–216. doi: 10.2307/3796089
  • Morris ZH. Reconstructing subsistence practices of Southwestern Ontario Late Woodland Peoples (AD 900–1600) using stable isotopic analyses of faunal material [Doctoral Dissertation]. Richmond, ON:Department of Anthropology, University of Western Ontario; 2015.
  • McCoy M, Vaughan C. Resultados preliminares del estudio del venado cola blanca (Odocoileus virginianus) en Costa Rica. Investigaciones sobre fauna silvestre de Costa Rica. San José, Costa Rica, Universidad Estatal a Distancia; 1985. p. 25–79. Spanish.
  • Rivera-Araya M, Pilaar Birch S. Stable isotope signatures in white-tailed deer as a seasonal paleoenvironmental proxy: A case study from Georgia, United States. Palaeogeogr Palaeoclimatol Palaeoecol. 2018;505:53–62. doi: 10.1016/j.palaeo.2018.05.025
  • Hallin KA, Schoeninger MJ, Schwarcz HP. Paleoclimate during Neandertal and anatomically modern human occupation at Amud and Qafzeh, Israel: the stable isotope data. J Hum Evol. 2012;62:59–73. doi: 10.1016/j.jhevol.2011.09.005
  • Fricke HC, O’Neil JR. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate; implications for palaeoclimatological and palaeobiological research. Palaeogeogr Palaeoclimatol Palaeoecol. 1996;126:91–99. doi: 10.1016/S0031-0182(96)00072-7
  • Kohn MJ, Schoeninger MJ, Valley JW. Variability in oxygen isotope compositions of herbivore teeth; reflections of seasonality or developmental physiology? Chem Geol. 1998;152:97–112. doi: 10.1016/S0009-2541(98)00099-0
  • Lee-Thorp JA, Sponheimer M, Luyt J. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. J Hum Evol. 2007;53:595–601. doi: 10.1016/j.jhevol.2006.11.020
  • Nelson SV. Paleoseasonality inferred from equid teeth and intra-tooth isotopic variability. Palaeogeogr Palaeoclimatol Palaeoecol. 2005;222:122–144. doi: 10.1016/j.palaeo.2005.03.012
  • Stevens RE, Balasse M, O’Connell TC. Intra-tooth oxygen isotope variation in a known population of red deer: Implications for past climate and seasonality reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol. 2011;301:64–74. doi: 10.1016/j.palaeo.2010.12.021
  • Longinelli A. Oxygen isotopes in mammal bone phosphate; a new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta. 1984;48:385–390. doi: 10.1016/0016-7037(84)90259-X
  • Luz B, Kolodny Y, Horowitz M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim Cosmochim Acta. 1984;48:1689–1693. doi: 10.1016/0016-7037(84)90338-7
  • Cormie AB, Schwarcz HP. Stable isotopes of nitrogen and carbon of North American white-tailed deer and implications for paleodietary and other food web studies. Palaeogeogr Palaeoclimatol Palaeoecol. 1994;107:227–241. doi: 10.1016/0031-0182(94)90096-5
  • Luz B, Cormie AB, Schwarcz HP. Oxygen isotope variations in phosphate of deer bones. Geochim Cosmochim Acta. 1990;54:1723–1728. doi: 10.1016/0016-7037(90)90403-8
  • Villareal Espino-Barros OA, Marin Fuentes MM. Agua de origen vegetal para el venado cola blanca mexicano. Arch Zootec. 2005;54:191–196. Spanish.
  • Cormie AB, Luz B, Schwarcz HP. Relationship between the hydrogen and oxygen isotopes of deer bone and their use in the estimation of relative humidity. Geochim Cosmochim Acta. 1994;58:3439–3449. doi: 10.1016/0016-7037(94)90097-3
  • Repussard A, Schwarz HP, Emery KF, et al. The great maya droughts in cultural context. In: Iannone G, editor. Oxygen isotopes from Maya archaeological deer remains: Experiments in tracing droughts using bones. Boulder, CO: University Press of Colorado; 2014. p. 231–254.
  • Cernusak LA, Barbour MM, Arndt SK, et al. Stable isotopes in leaf water of terrestrial plants: stable isotopes in leaf water. Plant Cell Environ. 2016;39:1087–1102. doi: 10.1111/pce.12703
  • Lehmann MM, Gamarra B, Kahmen A, et al. Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species. Plant Cell Environ. 2017;40:1658–1670. doi: 10.1111/pce.12974
  • O’Leary MH. Review. carbon isotope fractionation in plants. Phytochemistry. 1981;20:553–567. doi: 10.1016/0031-9422(81)85134-5
  • Brown HR. Agronomic implications of C4 photosynthesis. In: Sage RF, Monson RK, editor. C4 plant biology. London: Academic Press; 1999. p. 473–507.
  • Sage RF, Wedin DA, Li M. The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK, editor. C4 plant biology. London: Academic Press; 1999. p. 313–374.
  • Kohn MJ. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA. 2010;107:19691–19695. doi: 10.1073/pnas.1004933107
  • Balasse M. Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling. Int J Osteoarchaeol. 2002;12:155–165. doi: 10.1002/oa.601
  • Harrison RG, Katzenberg MA. Paleodiet studies using stable carbon isotopes from bone apatite and collagen: examples from southern Ontario and San Nicolas Island, California. J Anthropol Archaeol. 2003;22:227–244. doi: 10.1016/S0278-4165(03)00037-0
  • Krueger HW, Sullivan CH. Models for carbon isotope fractionation between diet and bone. In: Turnlund J, Johnson PE, editor. Stable isotopes in nutrition. Washington, DC: American Chemical Society; 1984. p. 205–222.
  • Sharp ZD, Cerling TE. Fossil isotope records of seasonal climate and ecology: Straight from the horse’s mouth. Geology. 1998;26:219–222. doi: 10.1130/0091-7613(1998)026<0219:FIROSC>2.3.CO;2
  • Sharpe AE, Emery KF, Inomata T, et al. Earliest isotopic evidence in the Maya region for animal management and long-distance trade at the site of Ceibal, Guatemala. Proc Natl Acad Sci USA. 2018;115:3605–3610. doi: 10.1073/pnas.1713880115
  • Somerville AD, Sugiyama N, Manzanilla LR, et al. Animal management at the ancient metropolis of Teotihuacan, Mexico: stable isotope analysis of leporid (cottontail and jackrabbit) bone mineral. PLOS ONE. 2016;11:e0159982. doi: 10.1371/journal.pone.0159982
  • Wiedemann FB, Bocherens H, Mariotti A, et al. Methodological and archaeological implications of intra-tooth isotopic variations (δ13C, δ18O) in herbivores from Ain Ghazal (Jordan, Neolithic). J Archaeol Sci. 1999;26:697–704. doi: 10.1006/jasc.1998.0392
  • Hobson KA, Schwarcz HP. The variation in δ13C values in bone collagen for two wild herbivore populations: implications for palaeodiet studies. J Archaeol Sci. 1986;13:101–106. doi: 10.1016/0305-4403(86)90001-4
  • Lee-Thorp JA. Preservation of biogenic carbon isotopic signals in Plio-Pleistocene bone and tooth mineral. Adv Archaeol Museum Sci. 2000;5:89–115. doi: 10.1007/0-306-47194-9_5
  • Halls LK. White-tailed deer : ecology and management. Harrisburg (PA): Stackpole Books; 1984.
  • Koch PL. Isotopic reconstruction of past continental environments. Annu Rev Earth Planet Sci. 1998;26:573–613. doi: 10.1146/annurev.earth.26.1.573
  • Payne S. Kill-off patterns in sheep and goats: the mandibles from aşvan Kale. Anatol Stud. 1973;23:281–303. doi: 10.2307/3642547
  • Zazzo A, Balasse M, Patterson WP. The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine. J Archaeol Sci. 2006;33:1177–1187. doi: 10.1016/j.jas.2005.12.006
  • Schöne BR, Schmitt K, Maus M. Effects of sample pretreatment and external contamination on bivalve shell and Carrara marble δ18O and δ13C signatures. Palaeogeogr Palaeoclimatol Palaeoecol. 2016;484:22–32.
  • Wierzbowski H. Effects of pre-treatments and organic matter on oxygen and carbon isotope analyses of skeletal and inorganic calcium carbonate. Int J Mass Spectrom. 2007;268:16–29. doi: 10.1016/j.ijms.2007.08.002
  • Garvie-Lok SJ, Varney TL, Katzenberg MA. Preparation of bone carbonate for stable isotope analysis: the effects of treatment time and acid concentration. J Archaeol Sci. 2004;31:763–776. doi: 10.1016/j.jas.2003.10.014
  • Iacumin P, Bocherens H, Mariotti A, et al. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite; a way to monitor diagenetic alteration of bone phosphate? Earth Planet Sci Lett. 1996;142:1–6. doi: 10.1016/0012-821X(96)00093-3
  • Bowen GJ, Revenaugh J. Interpolating the isotopic composition of modern meteoric precipitation: isotopic composition of modern precipitation. Water Resour Res. 2003;39:1–13. doi: 10.1029/2003WR002086
  • Daux V, Lécuyer C, Héran M-A, et al. Oxygen isotope fractionation between human phosphate and water revisited. J Hum Evol. 2008;55:1138–1147. doi: 10.1016/j.jhevol.2008.06.006
  • Pryor AJE, Stevens RE, O’Connell TC, et al. Quantification and propagation of errors when converting vertebrate biomineral oxygen isotope data to temperature for palaeoclimate reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol. 2014;412:99–107. doi: 10.1016/j.palaeo.2014.07.003
  • Scherer AK, de Carteret A, Newman S. Local water resource variability and oxygen isotopic reconstructions of mobility: A case study from the Maya area. J Archaeol Sci Rep. 2015;2:666–676.
  • Thornton EK. Reconstructing ancient Maya animal trade through strontium isotope (87Sr/86Sr) analysis. J Archaeol Sci. 2011;38:3254–3263. doi: 10.1016/j.jas.2011.06.035
  • Balasse M. Potential biases in sampling design and interpretation of intra-tooth isotope analysis. Int J Osteoarchaeol. 2003;13:3–10. doi: 10.1002/oa.656
  • Balasse M, Obein G, Ughetto-Monfrin J, et al. Investigating seasonality and season of birth in past herds: a reference set of sheep enamel stable isotope ratios. Archaeometry. 2012;54:349–368. doi: 10.1111/j.1475-4754.2011.00624.x
  • Medina-Elizalde M, Rohling EJ. Collapse of classic Maya civilization related to modest reduction in precipitation. Science. 2012;335:956–959. doi: 10.1126/science.1216629
  • Haug GH, Günther D, Peterson LC, et al. Climate and the collapse of Maya civilization. Science. 2003;299:1731–1735. doi: 10.1126/science.1080444
  • Hodell DA, Brenner M, Curtis JH. Climate and cultural history of the northeastern Yucatan Peninsula, Quintana Roo, Mexico. Clim Change. 2007;83:215–240. doi: 10.1007/s10584-006-9177-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.