252
Views
9
CrossRef citations to date
0
Altmetric
Articles

Geographic effects on stable isotopic composition of precipitation across ThailandFootnote*

ORCID Icon, &
Pages 111-121 | Received 09 Aug 2019, Accepted 28 Nov 2019, Published online: 23 Jan 2020

References

  • Craig H. Isotopic variations in meteoric waters. Science. 1961;133(3465):1702–1703. doi: 10.1126/science.133.3465.1702
  • Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16(4):436–468. doi: 10.3402/tellusa.v16i4.8993
  • Gat JR. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci. 1996;24(1):225–262. doi: 10.1146/annurev.earth.24.1.225
  • Xia C, Liu G, Mei J, et al. Characteristics of hydrogen and oxygen stable isotopes in precipitation and the environmental controls in tropical monsoon climatic zone. Int J Hydrog Energy. 2019;44(11):5417–5427. doi: 10.1016/j.ijhydene.2018.10.171
  • Ichiyanagi K, Yamanaka MD. Interannual variation of stable isotopes in precipitation at Bangkok in response to El Niño Southern Oscillation. Hydrol Process. 2005;19(17):3413–3423. doi: 10.1002/hyp.5978
  • Ichiyanagi K, Yoshimura K, Yamanaka MD. Validation of changing water origins over Indochina during the withdrawal of the Asian monsoon using stable isotopes. SOLA. 2005;1:113–116. doi: 10.2151/sola.2005-030
  • Ichiyanagi K. Studies and applications of stable isotopes in precipitation. J Japan Assoc Hydrol Sci. 2007;37(4):165–185.
  • Suwarman R, Ichiyanagi K, Tanoue M, et al. The variability of stable isotopes and water origin of precipitation over the Maritime Continent. SOLA. 2013;9:74–78. doi: 10.2151/sola.2013-017
  • Kurita N, Ichiyanagi K, Matsumoto J, et al. The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J Geochem Explor. 2009;102(3):113–122. doi: 10.1016/j.gexplo.2009.03.002
  • Datta PS, Tyagi SK, Chandrasekharan H. Factors controlling stable isotope composition of rainfall in New Delhi, India. J Hydrol. 1991;128(1):223–236. doi: 10.1016/0022-1694(91)90139-9
  • Rozanski K, Araguas-Araguas L, Gonfiantini R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science. 1992;258(5084):981–985. doi: 10.1126/science.258.5084.981
  • Merlivat L, Jouzel J. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res Oceans. 1979;84(C8):5029–5033. doi: 10.1029/JC084iC08p05029
  • Bershaw J. Controls on deuterium excess across Asia. Geosciences. 2018;8(7):257. doi: 10.3390/geosciences8070257
  • Rozanski K, Johnsen SJ, Schotterer U, et al. Reconstruction of past climates from stable isotope records of palaeo-precipitation preserved in continental archives. Hydrol Sci J. 1997;42(5):725–745. doi: 10.1080/02626669709492069
  • Jouzel J, Merlivat L, Lorius C. Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum. Nature. 1982;299(5885):688–691. doi: 10.1038/299688a0
  • Pfahl S, Sodemann H. What controls deuterium excess in global precipitation? Clim Past. 2014;10(2):771–781. doi: 10.5194/cp-10-771-2014
  • Froehlich K, Kralik M, Papesch W, et al. Deuterium excess in precipitation of Alpine regions – moisture recycling. Isot Environ Health Stud. 2008;44(1):61–70. doi: 10.1080/10256010801887208
  • Liu Z, Tian L, Yao T, et al. Seasonal deuterium excess in Nagqu precipitation: influence of moisture transport and recycling in the middle of Tibetan Plateau. Environ Geol. 2008;55(7):1501–1506. doi: 10.1007/s00254-007-1100-4
  • Kong Y, Pang Z, Froehlich K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus Ser B-Chem Phys Meteorol. 2013;65(1):19251. doi: 10.3402/tellusb.v65i0.19251
  • Delattre H, Vallet-Coulomb C, Sonzogni C. Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures. Atmos Chem Phys. 2015;15(17):10167–10181. doi: 10.5194/acp-15-10167-2015
  • Wang S, Zhang M, Che Y, et al. Influence of below-cloud evaporation on deuterium excess in precipitation of arid Central Asia and its meteorological controls. J Hydrometeorol. 2016;17(7):1973–1984. doi: 10.1175/JHM-D-15-0203.1
  • Khedari J, Sangprajak A, Hirunlabh J. Thailand climatic zones. Renew Energy. 2002;25(2):267–280. doi: 10.1016/S0960-1481(01)00005-2
  • Kripalani RH, Singh SV, Panchawagh N, et al. Variability of the summer monsoon rainfall over Thailand—comparison with features over India. Int J Climatol. 1995;15(6):657–672. doi: 10.1002/joc.3370150606
  • Goswami BN. South Asian monsoon. In Intraseasonal variability in the atmosphere–ocean climate system. Berlin, Heidelberg: Springer; 2005. p. 19–61.
  • Shaw P-T, Chao S-Y. Surface circulation in the South China Sea. Deep-Sea Res Part I-Oceanogr Res Pap. 1994;41(11–12):1663–1683. doi: 10.1016/0967-0637(94)90067-1
  • TMD. Mean monthly rainfall in Thailand: Thai Meteorological Department; 2016 [August 2019]. Available from: http://www.tmd.go.th/en/climate.php?FileID=7
  • Limsakul A, Singhruck P. Long-term trends and variability of total and extreme precipitation in Thailand. Atmos Res. 2016;169:301–317. doi: 10.1016/j.atmosres.2015.10.015
  • Islam M, Chan A, Ashfold M, et al. Effects of El-Niño, Indian Ocean Dipole, and Madden-Julian Oscillation on surface air temperature and rainfall anomalies over Southeast Asia in 2015. Atmosphere. 2018;9(9):352. doi: 10.3390/atmos9090352
  • International Atomic Energy Agency. IAEA/GNIP precipitation sampling guide V2. 2014 Sept. 2; 2014.
  • Weisstein EW. Least squares fitting. From MathWorld–A Wolfram Web Resource; 2002. Available from: http://mathworld.wolfram.com/LeastSquaresFitting.html.
  • Dee DP, Uppala SM, Simmons AJ, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc. 2011;137(656):553–597. doi: 10.1002/qj.828
  • Chansaengkrachang K, Luadsong A, Aschariyaphotha N. Vertically integrated moisture flux convergence over Southeast Asia and its relation to rainfall over Thailand. Pertanika J Sci Technol. 2018;26(1):235–246.
  • Howarth DA. Seasonal variations in the vertically integrated water vapor transport fields over the Southern Hemisphere. Mon Weather Rev. 1983;111(6):1259–1272. doi: 10.1175/1520-0493(1983)111<1259:SVITVI>2.0.CO;2
  • Trenberth KE, Guillemot CJ. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn. 1998;14(3):213–231. doi: 10.1007/s003820050219
  • Kurita N. Water isotopic variability in response to mesoscale convective system over the tropical ocean. J Geophys Res Atmos. 2013;118(18):10,376–10,390. doi: 10.1002/jgrd.50754
  • Araguás-Araguás L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over Southeast Asia. J Geophys Res Atmos. 1998;103(D22):28721–28742. doi: 10.1029/98JD02582
  • Wang B, Wu R, Lau KM. Interannual variability of the Asian summer monsoon: contrasts between the Indian and the Western North Pacific–east Asian monsoons*. J Climate. 2001;14(20):4073–4090. doi: 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
  • Jadhav J, Panickal S, Marathe S, et al. On the possible cause of distinct El Niño types in the recent decades. Sci Rep. 2015;5:17009–17009. doi: 10.1038/srep17009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.