168
Views
6
CrossRef citations to date
0
Altmetric
Articles

Multi-isotope (δ2H, δ18O, δ13C-TDIC, δ18O-TDIC, 87Sr/86Sr) and hydrochemical study on fractured-karstic and detritic shallow aquifers in the Pampean region, Argentina

ORCID Icon, , , , , & show all
Pages 513-532 | Received 13 Mar 2020, Accepted 14 Aug 2020, Published online: 30 Sep 2020

References

  • Scesi L, Gattinoni P. Water circulation in rocks. Milano, Italy: Springer Science and Business Media; 2009.
  • Singhal BBS, Gupta RP. Applied hydrogeology of fractured rocks. 2nd ed. Dordrecht, Netherlands: Springer Science and Business Media; 2010.
  • Dietrich P, Helmig R, Sauter M, et al. Flow and transport in fractured porous media. Berlin, Germany: Springer Science & Business Media; 2005.
  • Pulido Bosch A. Nociones de hidrogeología para ambientólogos. Almería: Editorial Universidad de Almería; 2014. Hidrogeología específica; p. 422–495. Spanish.
  • Dreybrodt W. Processes in karst systems. Heidelberg: Springer; 1988. (Springer Series in Physical Environment).
  • Bakalowicz M. Karst groundwater: a challenge for new resources. Hydrogeol J. 2005;13(1):148–160. doi: 10.1007/s10040-004-0402-9
  • Ford DC, Williams PW. Karst hydrogeology and geomorphology. Chichester: Wiley; 2007.
  • Appelo CAJ, Postma D. Geochemistry, groundwater and pollution. Rotterdam: AA Balkema; 1993.
  • Cartwright I, Weaver TR. Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability. Hydrogeol J. 2005;13(5–6):752–770. doi: 10.1007/s10040-003-0318-9
  • Wang Y, Guo Q, Su C, et al. Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J Hydrol. 2006;328:592–603. doi: 10.1016/j.jhydrol.2006.01.006
  • Négrel P, Millot R, Guerrot C, et al. Heterogeneities and interconnections in groundwaters: coupled B, Li and stable-isotope variations in a large aquifer system (Eocene Sand aquifer, Southwestern France). Chem Geol. 2012;296:83–95. doi: 10.1016/j.chemgeo.2011.12.022
  • Hofmann H, Cartwright I. Using hydrogeochemistry to understand inter-aquifer mixing in the on-shore part of the Gippsland Basin, southeast Australia. Appl Geochem. 2013;33:84–103. doi: 10.1016/j.apgeochem.2013.02.004
  • Brenot A, Négrel P, Petelet-Giraud E, et al. Insights from the salinity origins and interconnections of aquifers in a regional scale sedimentary aquifer system (Adour-Garonne district, SW France): contributions of δ34S and δ18O from dissolved sulfates and the 87Sr/86Sr ratio. Appl Geochem. 2015;53:27–41. doi: 10.1016/j.apgeochem.2014.12.002
  • Duvert C, Raiber M, Owen DD, et al. Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity. Appl Geochem. 2015;61:146–159. doi: 10.1016/j.apgeochem.2015.05.021
  • Owen DD, Raiber M, Cox ME. Relationships between major ions in coal seam gas groundwaters: examples from the Surat and Clarence-Moreton basins. Int J Coal Geol. 2015;137:77–91. doi: 10.1016/j.coal.2014.11.004
  • Santoni S, Huneau F, Garel E, et al. Strontium isotopes as tracers of water–rocks interactions, mixing processes and residence time indicator of groundwater within the granite–carbonate coastal aquifer of Bonifacio (Corsica, France). Sci Total Environ. 2016;573:233–246. doi: 10.1016/j.scitotenv.2016.08.087
  • Clark ID, Fritz P. Environmental isotopes in hydrogeology. Boca Raton (FL): CRC; 1997.
  • Kendall C, McDonnell JJ, editors. Isotope tracers in catchment hydrology. Amsterdam: Elsevier Science B.V.; 1998.
  • Glok-Galli M, Damons ME, Siwawa S, et al. Stable isotope hydrology in fractured and detritic aquifers at both sides of the south Atlantic Ocean: Mar del Plata (Argentina) and the Rawsonville and Sandspruit river catchment areas (South Africa). J South Am Earth Sci. 2017;73C:119–129. doi: 10.1016/j.jsames.2016.12.006
  • Mook G, editor. Isótopos ambientales en el ciclo hidrológico. Publications of “Instituto Geológico y Minero de España”, Guides and Manuals Series, Number 1. Madrid, Spain: IGME; 2002. Spanish.
  • Négrel P, Casanova J, Aranyossy JF. Strontium isotope systematics used to decipher the origin of groundwaters sampled from granitoids: the Vienne Case (France). Chem Geol. 2001;177(3–4):287–308. doi: 10.1016/S0009-2541(00)00414-9
  • Soler A, Canals A, Goldstein SL, et al. Sulfur and strontium isotope composition of the Llobregat River (NE Spain): tracers of natural and anthropogenic chemicals in stream waters. Water Air Soil Pollut. 2002;136(1–4):207–224. doi: 10.1023/A:1015231810548
  • Petelet-Giraud E, Negrel P, Casanova J. Variability of 87Sr/86Sr in water draining granite revealed after a double correction for atmospheric and anthropogenic inputs. Hydrol Sci J. 2003;48(5):729–742. doi: 10.1623/hysj.48.5.729.51448
  • Clark ID. Groundwater geochemistry and isotopes. Boca Raton/London/New York: CRC Press/Taylor & Francis; 2015.
  • Wetten C, Damiani O. Estudio hidrogeológico del Karst de Los Berros (Argentina) para abastecimiento industrial. Antecedentes. I Geology Symposium, Nerja Cave; 1999. Spanish.
  • Aguilera EY, Carretero S, Rabassa J. Pseudokarst and speleothems in the Chihuido granite, province of Mendoza, Argentina. In: Rabassa J, Ollier C, editors. Gondwana landscapes in Southern South America. Dordrecht: Springer; 2014. p. 503–515.
  • Nágera JJ. Historia Física de la Provincia de Buenos Aires, Volume I Tandilia. Humanities and Education Sciences Library. La Plata University, La Plata, Buenos Aires, Argentina. 1940;24:1–272. Spanish.
  • Teruggi ME, Kilmurray JO. Tandilia. In: Report “Geología de la provincia de Buenos Aires”, 6° Argentine Geological Congress; 1975. p. 55–77.
  • Teruggi ME, Kilmurray JO. Sierras Septentrionales de la Provincia de Buenos Aires. In: Turner, J.C.M. (Ed.), Proc. 2° Argentine Regional Symposium. National Academy of Sciences of Córdoba, vol. 2. Córdoba, Argentina; 1980. p. 919–956. Spanish.
  • Dalla Salda LH, Spalletti L, Poiré D, et al. Tandilia. In: Aceñolaza FG, editor. Temas de la Geología Argentina 1. San Miguel de Tucumán: INSUGEO; 2006. p. 17–46. (Serie Correlación Geológica; 21). Spanish.
  • Auge MP. Abastecimiento de agua potable a la ciudad de Olavarría, provincia de Buenos Aires – Informe final. Consejo Federal de Inversiones, Municipalidad de Olavarría, Obras Sanitarias de la provincia de Buenos Aires; 1993. Spanish.
  • Díaz O, Usunoff E, Colasurdo V, et al. Estudio físico–químico–bacteriológico del arroyo Tapalqué en la ciudad de Olavarría e hidroquímica de las aguas subterráneas de la región. In: Proceedings of “IV Jornadas Geológicas y Geofísicas Bonaerenses, 2”; Junín; Buenos Aires; 1995. p. 285–289. Spanish.
  • Díaz O, Colasurdo V, Usunoff E. Inferencias hidrodinámicas a partir de datos hidroquímicos en la cuenca del arroyo Tapalqué. In: Proceedings of “I Congreso Nacional de Hidrogeología”; Bahía Blanca, Buenos Aires; 1997. p. 267–279. Spanish.
  • Kruse E, Rojo A, Varela L. Características Hidroquímicas Subterráneas de la Cuenca del Arroyo Tapalqué (Buenos Aires). In: Proceedings of XII Argentine Geological Congress, II Hydrocarbon Exploration Congress, Volume VI; Argentina; 1993. p. 208–215. Spanish.
  • Varela LB. Escurrimiento subterráneo en la cuenca del arroyo Tapalqué. In: Situación Ambiental de la Provincia de Buenos Aires. A. Recursos y rasgos naturales en la evaluación ambiental, año II, no. 11. Coordination: Dr. López HL and Dr. Tonni EP. Buenos Aires, Argentina: Comisión de Investigaciones Científicas; 1992. Spanish.
  • Varela L, Deluchi M, Laurencena P, et al. Particularidades del flujo subterráneo en la región inferior del arroyo Tapalquén (provincia de Buenos Aires). In: II Congreso Argentino de Hidrogeología (Santa Fe); INSUGEO; 1999. (Serie Correlación Geológica; 13). Spanish.
  • Glok-Galli M, Martínez DE, Colasurdo V, et al. Caracterización hidrogeoquímica e isotópica de la cuenca alta del arroyo Tapalqué, provincia de Buenos Aires. In: García RF, Mariño EE, editors. Calidad del Agua Subterránea [Groundwater Quality Workshop]. IX Congreso Argentino de Hidrogeología y VII Seminario Hispano-Latinoamericano Sobre Temas Actuales de la Hidrología Subterránea, San Fernando del Valle de Catamarca, Catamarca, Argentina Catamarca: Editorial Científica Universitaria; 2016. p. 272–279. Spanish.
  • Glok-Galli M, Barredo Codesal SP, Martínez DE, et al. Hydrogeochemical and isotopic characterization of the Tapalqué creek upper basin and its associated karst, Buenos Aires, Argentina. In: Moore K, White S, editors. Proceedings of the 17th International Congress of Speleology, Sydney 2017, Volume 2. Sydney, NSW, Australia: Australian Speleological Federation Inc. Sydney; 2017. p. 16–21.
  • Frenguelli J. Rasgos generales de la morfología y geología de la Provincia de Buenos Aires. La Plata, Buenos Aires, Argentina: Ministerio de Obras Publicas, Laboratorio de Ensayo de Materiales e Investigaciones Tecnológicas; 1950. Spanish.
  • Kottek M, Grieser J, Beck C, et al. World map of the Köppen-Geiger climate classification updated. Meteorol Z. 2006;15:259–263. doi: 10.1127/0941-2948/2006/0130
  • Marchese HG, Di Paola EC. Miogeosinclinal tandil. Rev Asoc Geol Arg. 1975;30(2):161–179.
  • Marchese HG, Di Paola EC. Reinterpretación estratigráfica de la Perforación Punta Mogotes N° 1, Provincia de Buenos Aires, República Argentina. Rev Asoc Geol Arg. 1975;30:44–52. Spanish.
  • Dalla Salda LH, Iñiguez Rodríguez AM. La Tinta, Precámbrico y Paleozoico de Buenos Aires. In: Proceedings 7 Argentine Geological Congress; Neuquén; 1979. p. 539–550. Spanish.
  • Poiré DG, Spalletti LA. La cubierta sedimentaria precámbrica/paleozoica inferior del Sistema de Tandilia. In: Geología y Recursos Minerales de la provincia de Buenos Aires. Report XVI Argentine Geological Congress; 2005. p. 51–68. Spanish.
  • Pankhurst RJ, Ramos A, Linares E. Antiquity of the Río de la Plata craton in Tandilia, southern Buenos Aires province, Argentina. J South Am Earth Sci. 2003;16:5–13. doi: 10.1016/S0895-9811(03)00015-4
  • Poiré DG, Gaucher C. Lithostratigraphy. Neoproterozoic Cambrian evolution of the Río de la Plata Palaeocontinent. In: Gaucher C, Sial AN, Halverson GP, et al., editors. Neoproterozoic–Cambrian tectonics, global change and evolution: a focus on southwestern Gondwana. Elsevier; 2009. p. 87–101. (Developments in Precambrian Geology; 16).
  • Teruggi ME. El mineral volcánico-piroclástico en la sedimentación cuaternaria argentina. Rev Asoc Geol Arg. 1954;IX(3):184–191. Spanish.
  • Teruggi ME. The nature and origin of Argentine Loess. J Sediment Petrol. 1957;27(3):322–332.
  • Dangavs N, Blasi A. Los depósitos de yeso intrasedimentario del arroyo El Siasgo, partidos de Monte y General Paz, provincia de Buenos Aires. Rev Asoc Geol Arg. 2002;57(3):315–327. Spanish.
  • Quiroz Londoño OM, Martínez DE, Dapeña C, et al. Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeol J. 2008;16(6):1113–1127. doi: 10.1007/s10040-008-0289-y
  • Vital M, Daval D, Clément A, et al. Importance of accessory minerals for the control of water chemistry of the Pampean aquifer, province of Buenos Aires, Argentina. Catena. 2018;160:112–123. doi: 10.1016/j.catena.2017.09.005
  • Auge M. Regiones Hidrogeológicas: República Argentina y provincias de Buenos Aires, Mendoza, Santa Fe. E-Book. 2004. Spanish. http://tierra.rediris.es/hidrored/ebooks/miguel/RegionesHidrogeol.pdf.
  • Silva Busso AA, Amato SD. Aspectos hidrogeológicos de la región periserrana de Tandilia (Buenos Aires, Argentina). Bol Geol Miner. 2012;123(1):27–40. Spanish.
  • APHA-AWWA-WPCF. Métodos Normalizados para el Análisis de Aguas Potables y Residuales. Madrid, Spain: Ediciones Díaz de Santos S.A.; 1992. Spanish.
  • Parkhurst DL, Appelo CA. User’s guide to PHREEQC, a computer program for speciation, reaction path, advective–transport, and inverse geochemical calculations. Reston (VA): US Geological Survey; 1999. (Water resources investigations report; 99-4259).
  • Plummer LN, Prestemon EC, Parkhurst DL. An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH. Reston (VA): US Geological Survey; 1991. (Water resources investigations report; 91-4078).
  • Lis G, Wassenaar LI, Hendry MJ. High precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal Chem. 2008;80:287–293. doi: 10.1021/ac701716q
  • Gonfiantini R. Standards for stable isotope measurements in natural compounds. Nature. 1978;271:534–536. doi: 10.1038/271534a0
  • Dapeña C, Varni M, Panarello HO, et al. Composición isotópica de la precipitación de la Estación Azul, provincia de Buenos Aires. Red Nacional de Colectores Argentina. In: Varni M, Entraigas i, Vives L, editors. Proceedings I International Congress of Plain Hydrology; 21–24/09/2010; Azul, Buenos Aires, Argentina. p. 386–393. Spanish.
  • IAEA/WMO. Global network for isotopes in precipitation. The GNIP Database. 2006. http://isohis.iaea.org.
  • Martínez DE, Bocanegra EM. Hydrochemistry and cationic exchange processes in the coastal aquifer of Mar del Plata, Argentina. Hydrogeol J. 2002;10(3):393–408. doi: 10.1007/s10040-002-0195-7
  • Craig H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science. 1961;133(3467):1833–1834. doi: 10.1126/science.133.3467.1833
  • Jiménez-Martínez J, Custodio E. El exceso de deuterio en la lluvia y en la recarga a los acuíferos en el área circum-mediterránea y en la costa mediterránea española. Bol Geol Miner. 2008;119(1):21–32. Spanish.
  • Faure G. Principles of isotope geology. 2nd ed. Hoboken (NJ): Wiley; 1986.
  • Katz BG, Bullen TD. The combined use of 87Sr/86Sr and carbon and water isotopes to study hydrochemical interaction between groundwater and lake water in mantled karst. Geochim Cosmochim Acta. 1996;60:5075–5087. doi: 10.1016/S0016-7037(96)00296-7
  • Dogramaci SS, Herczeg AL. Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol. 2002;262:50–67. doi: 10.1016/S0022-1694(02)00021-5
  • Faure G, Mensing TM. Isotopes: Principles and applications. 3rd ed. Hoboken (NJ): Wiley & Sons; 2004.
  • Cartwright I, Weaver TR, Petrides B. Controls on 87Sr/86Sr ratios of groundwater in silicate-dominated aquifers: SE Murray Basin, Australia. Chem Geol. 2007;246:107–123. doi: 10.1016/j.chemgeo.2007.09.006
  • Bullen TD, Kendall C. Tracing of weathering reactions and water flowpaths: a multi-isotope approach. In: Kendall C, McDonnell JJ, editors. Isotope tracers in catchment hydrology. Amsterdam: Elsevier; 1998. p. 611–646.
  • Graven H, Allison CE, Etheridge DM, et al. Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci Model Dev. 2017;10(12):4405–4417. doi: 10.5194/gmd-10-4405-2017
  • Recavarren P. La producción agropecuaria en Olavarría, Benito Juárez, Laprida y Gral. La Madrid: evolución y desafíos a futuro. 1st ed. Balcarce (Buenos Aires): INTA Ed.; 2016; Spanish.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.