150
Views
0
CrossRef citations to date
0
Altmetric
Hydrology & Hydrogeology

Using 81Kr and isotopic tracers to characterise old groundwater in the Bangkok metropolitan and vicinity areas

, ORCID Icon, , , , , , , , , , , , , & show all
Pages 426-453 | Received 05 May 2023, Accepted 29 Aug 2023, Published online: 09 Oct 2023

References

  • Sanford WE, Buapeng S. Assessment of a groundwater flow model of the Bangkok Basin, Thailand, using carbon-14-based ages and paleohydrology. Hydrogeol J. 1996;4(4):26–40. doi:10.1007/s100400050083
  • Buapeng S, Wattayakorn G. Groundwater situation in Bangkok and its vicinity. In: HydroChange 2008 – From headwaters to the ocean: Hydrological changes and watershed management; 2008 Oct 1–3; Kyoto, Japan.
  • Buapeng S, Foster S. Controlling groundwater abstraction and related environmental degradation in metropolitan Bangkok – Thailand. The World Bank; 2008. (Case Profile Collection; No. 20).
  • Lorphensri O, Ladawadee A, Dhammasarn S. Review of groundwater management and land subsidence in Bangkok, Thailand. In: Taniguchi M, editor. Groundwater and subsurface environments: human impacts in Asian coastal cities. Tokyo: Springer Japan; 2011. p. 127–142.
  • Tanachaichoksirikun P, Seeboonruang U, Fogg GE. Improving groundwater model in regional sedimentary basin using hydraulic gradients. KSCE J Civ Eng. 2020;24(5):1655–1669. doi:10.1007/s12205-020-1781-8
  • Intui S, Inazumi S, Soralump S. Evaluation of land subsidence during groundwater recovery. Appl Sci. 2022;12(15):7904. doi:10.3390/app12157904
  • Ramnarong V, Buapeng S. Saltwater intrusion and land subsidence due to over exploitation of groundwater in Bangkok. In: 29th International Geological Congress (IGC); 1992 Aug 24 to Sep 3; Kyoto, Japan.
  • Phien-wej N, Giao PH, Nutalaya P. Land subsidence in Bangkok, Thailand. Eng Geol. 2006;82(4):187–201. doi:10.1016/j.enggeo.2005.10.004
  • Stoecker F, Babel MS, Gupta AD, et al. Hydrogeochemical and isotopic characterization of groundwater salinization in the Bangkok aquifer system, Thailand. Environ Earth Sci. 2013;68(3):749–763. doi:10.1007/s12665-012-1776-y
  • Buapeng S. The use of environmental isotopes on groundwater hydrology in the selected areas in Thailand. Vienna: International Atomic Energy Agency; 1990; (Report IAEA-R-4803-F).
  • Cartwright I, Cendón D, Currell M, et al. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations. J Hydrol. 2017;555:797–811. doi:10.1016/j.jhydrol.2017.10.053
  • Cartwright I, Fifield LK, Morgenstern U. Using 3H and 14C to constrain the degree of closed-system dissolution of calcite in groundwater. Appl Geochem. 2013;32:118–128. doi:10.1016/j.apgeochem.2012.10.023
  • Clark I. Groundwater geochemistry and isotopes. 1st ed. Boca Raton: CRC Press; 2015.
  • Han LF, Plummer LN. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth-Sci Rev. 2016;152:119–142. doi:10.1016/j.earscirev.2015.11.004
  • Han L-F, Plummer LN, Aggarwal P. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating. Chem Geol. 2012;318–319:88–112. doi:10.1016/j.chemgeo.2012.05.004
  • Han L-F, Wassenaar LI. Principles and uncertainties of 14C age estimations for groundwater transport and resource evaluation. Isot Environ Health Stud. 2021;57(2):111–141. doi:10.1080/10256016.2020.1857378
  • Aggarwal PK, Araguas-Araguas L, Choudhry M, et al. Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis. Groundwater. 2014;52(1):20–24. doi:10.1111/gwat.12110
  • Tanachaichoksirikun P, Seeboonruang U. Distributions of groundwater age under climate change of Thailand’s Lower Chao Phraya Basin. Water (Basel). 2020;12(12):3474. doi:10.3390/w12123474
  • Tanachaichoksirikun P, Seeboonruang U. Effect of climate change on groundwater age of Thailand’s Lower Chao Phraya Basin. IOP Conf Ser Mater Sci Eng. 2019;639(1):012032. doi:10.1088/1757-899X/639/1/012032
  • Gerber C, Vaikmäe R, Aeschbach W, et al. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochim Cosmochim Acta. 2017;205:187–210. doi:10.1016/j.gca.2017.01.033
  • Matsumoto T, Chen Z, Wei W, et al. Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain. Earth Planet Sci Lett. 2018;493:208–217. doi:10.1016/j.epsl.2018.04.042
  • Matsumoto T, Zouari K, Trabelsi R, et al. Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating. Earth Planet Sci Lett. 2020;535:116120. doi:10.1016/j.epsl.2020.116120
  • Sturchio NC, Du X, Purtschert R, et al. One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys Res Lett. 2004;31(5):L05503. doi:10.1029/2003GL019234
  • Yokochi R, Zappala JC, Purtschert R, et al. Origin of water masses in Floridan Aquifer System revealed by 81Kr. Earth Planet Sci Lett. 2021;569:117060. doi:10.1016/j.epsl.2021.117060
  • IAEA. Isotope methods for dating old groundwater. Vienna: International Atomic Energy Agency; 2013.
  • Collon P, Antaya T, Davids B, et al. Measurement of 81Kr in the atmosphere. Nucl Instr Meth Phys Res B. 1997;123(1):122–127. doi:10.1016/S0168-583X(96)00674-X
  • Jiang W, Hu S-M, Lu Z-T, et al. Latest development of radiokrypton dating – a tool to find and study paleogroundwater. Quatern Int. 2020;547:166–171. doi:10.1016/j.quaint.2019.04.025
  • Purtschert R, Yokochi R, Jiang W, et al. Underground production of 81Kr detected in subsurface fluids. Geochim Cosmochim Acta. 2021;295:65–79. doi:10.1016/j.gca.2020.11.024
  • Jiang W, Bailey K, Lu ZT, et al. An atom counter for measuring 81Kr and 85Kr in environmental samples. Geochim Cosmochim Acta. 2012;91:1–6. doi:10.1016/j.gca.2012.05.019
  • Zappala JC, Bailey K, Jiang W, et al. Setting a limit on anthropogenic sources of atmospheric 81Kr through Atom Trap Trace Analysis. Chem Geol. 2017;453:66–71. doi:10.1016/j.chemgeo.2017.02.007
  • Zappala JC, Baggenstos D, Gerber C, et al. Atmospheric 81Kr as an integrator of cosmic-ray flux on the hundred-thousand-year time scale. Geophys Res Lett. 2020;47(3):e2019GL086381. doi:10.1029/2019GL086381
  • Sturchio NC, Kuhlman KL, Yokochi R, et al. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico. J Contam Hydrol. 2014;160:12–20. doi:10.1016/j.jconhyd.2014.02.002
  • Yokochi R, Ram R, Zappala JC, et al. Radiokrypton unveils dual moisture sources of a deep desert aquifer. Proc Natl Acad Sci USA. 2019;116(33):16222–16227. doi:10.1073/pnas.1904260116
  • Vives L, Rodríguez L, Manzano M, et al. Using isotope data to characterize and date groundwater in the southern sector of the Guaraní Aquifer System. Isot Environ Health Stud. 2020;56(5–6):533–550. doi:10.1080/10256016.2020.1810684
  • Sinsakul S. Late Quaternary geology of the Lower Central Plain, Thailand. J Asian Earth Sci. 2000;18(4):415–426. doi:10.1016/S1367-9120(99)00075-9
  • Kokusai Kogyo Co., Ltd. The study on management of groundwater and land subsidence in the Bangkok metropolitan area and its vicinity.. Tokyo: Japan International Cooperation Agency (JICA); 1995. (Final Report).
  • Bremard T. Monitoring land subsidence: the challenges of producing knowledge and groundwater management indicators in the Bangkok metropolitan region, Thailand. Sustainability. 2022;14(17):10593. doi:10.3390/su141710593
  • Putthividhya A, Laonamsai J. Hydrological assessment using stable isotope fingerprinting technique in the Upper Chao Phraya river basin. Lowl Technol Int. 2017;19:27–40.
  • Kamdee K, Corcho Alvarado JA, Occarach O, et al. Application of isotope techniques to study groundwater resources in the unconsolidated aquifers along the Ping River (Thailand). Isot Environ Health Stud. 2020;56:95–110. doi:10.1080/10256016.2020.1739672
  • Busch KW, Busch MA. Cavity-ringdown spectroscopy: an ultratrace-absorption measurement technique. Washington (DC): American Chemical Society; 1999; (ACS symposium series; 720).
  • IAEA. Using isotopes for design and monitoring of artificial recharge systems. Vienna: International Atomic Energy Agency; 2013; (IAEA-TECDOC-1723).
  • Rozanski K, Groening M. Tritium assay in water samples using electrolytic enrichment and liquid scintillation spectrometry. In: IAEA, editor. Quantifying uncertainty in nuclear analytical measurements. Vienna: International Atomic Energy Agency; 2004. p. 195–217. (IAEA-TECDOC-1401).
  • Khamanek K, Khuntong S, Saenboonruang K, et al. Assessing tritium contamination in Thailand's rainwater: a study of environmental monitoring and nuclear surveillance. J Environ Radioact. 2023;262:107151. doi:10.1016/j.jenvrad.2023.107151
  • Kamdee K, Srisuk K, Lorphensri O, et al. Use of isotope hydrology for groundwater resources study in Upper Chi river basin. J Radioanal Nucl Chem. 2013;297:405–418. doi:10.1007/s10967-012-2401-y
  • Matsumoto T, Solomon DK, Araguás-Araguás L, et al. The IAEA’s Coordinated Research Project on “Estimation of groundwater recharge and discharge by using the Tritium, Helium-3 dating technique”. Geochem J. 2017;51(5):385–390. doi:10.2343/geochemj.2.0500
  • Hillegonds D, Matsumoto T, Romeo N. Krypton isolation and purification from groundwater for 81Kr age dating. In: IAEA, editor. International Symposium on Isotope Hydrology: Revisiting Foundations and Exploring Frontiers. Vienna: International Atomic Energy Agency; 2015. p. 49.
  • Lu Z-T, Mueller P. Atom trap trace analysis of rare noble gas isotopes. In: Berman P, Arimondo E, Lin C, editors. Advances in atomic, molecular, and optical physics. Vol. 58. London: Academic Press; 2010. p. 173–205.
  • Aeschbach-Hertig W, El-Gamal H, Wieser M, et al. Modeling excess air and degassing in groundwater by equilibrium partitioning with a gas phase. Water Resour Res. 2008;44(8):W08449. doi:10.1029/2007WR006454
  • Aeschbach-Hertig W, Peeters F, Beyerle U, et al. Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature. 2000;405:1040. doi:10.1038/35016542
  • Aeschbach-Hertig W, Peeters F, Beyerle U, et al. Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res. 1999;35(9):2779–2792. doi:10.1029/1999WR900130
  • Aggarwal PK, Matsumoto T, Sturchio NC, et al. Continental degassing of 4He by surficial discharge of deep groundwater. Nat Geosci. 2015;8(1):35–39. doi:10.1038/ngeo2302
  • Castro MC, Stute M, Schlosser P. Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies. Appl Geochem. 2000;15(8):1137–1167. doi:10.1016/S0883-2927(99)00113-4
  • Torgersen T, Ivey GN. Helium accumulation in groundwater. II: a model for the accumulation of the crustal 4He degassing flux. Geochim Cosmochim Acta. 1985;49(11):2445–2452. doi:10.1016/0016-7037(85)90244-3
  • Aggarwal PK, Chang HK, Gastmans D, et al. Krypton-81, Helium-4 and Carbon-14 based estimation of groundwater ages in the Guarani Aquifer System: implications for the He-4 geochronometer. In: American Geophysical Union, Fall Meeting 2012; 2012. abstract id. H12A-05.
  • Han L-F, Plummer LN. Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating. Chem Geol. 2013;351:105–114. doi:10.1016/j.chemgeo.2013.05.011
  • Tamers MA. Validity of radiocarbon dates on ground water. Geophys Surv. 1975;2(2):217–239. doi:10.1007/BF01447909
  • Ingerson E, Pearson F. Estimation of age and rate of motion of groundwater by the 14C-method. In: Sugawara K, editor. Recent researches in the fields of atmosphere, hydrosphere and nuclear geochemistry. Editorial Committee for Sugawara Volume Publishing; 1964. p. 263–283.
  • Fontes JC, Garnier JM. Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res. 1979;15(2):399–413. doi:10.1029/WR015i002p00399
  • Mook WG. The dissolution-exchange model for dating groundwater with 14C. In: Interpretation of environmental isotope and hydrochemical data in groundwater hydrology. Advisory group meeting on interpretation of environmental isotope and hydrochemical data in groundwater hydrology; 1975 Jan 27–31; Vienna, Austria. Vienna, Austria: International Atomic Energy Agency; 1976. (Panel proceeding series).
  • Salem O, Visser J, Dray M, et al. Groundwater flow patterns in the western Libyan Arab Jamahiriya evaluated from isotopic data. In: Arid zone hydrology. Investigations with isotope techniques. Advisory group meeting on application of isotope techniques in arid zones hydrology; 1978 Nov 6–9; Vienna, Austria. Vienna, Austria: International Atomic Energy Agency; 1980. (IAEA-AG-158/12).
  • Eichinger L. A contribution to the interpretation of 14C groundwater ages considering the example of a partially confined sandstone aquifer. Radiocarbon. 1983;25(2):347–356. doi:10.1017/S0033822200005634
  • Loosli HH, Oeschger H. 37Ar and 81Kr in the atmosphere. Earth Planet Sci Lett. 1969;7(1):67–71. doi:10.1016/0012-821X(69)90014-4
  • Aalseth CE, Day AR, Fuller ES, et al. A new shallow underground gas-proportional counting lab—First results and Ar-37 sensitivity. Appl Radiat Isot. 2013;81(0):151–155. doi:10.1016/j.apradiso.2013.03.050
  • Aeschbach-Hertig W, Solomon DK. Noble gas thermometry in groundwater hydrology. In: Burnard P, editor. The noble gases as geochemical tracers. Berlin: Springer; 2013. p. 81–122.
  • Seltzer AM, Ng J, Aeschbach W, et al. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature. 2021;593(7858):228–232. doi:10.1038/s41586-021-03467-6
  • Corcho Alvarado JA, Leuenberger M, Kipfer R, et al. Reconstruction of past climate conditions over central Europe from groundwater data. Quat Sci Rev. 2011;30(23–24):3423–3429. doi:10.1016/j.quascirev.2011.09.003
  • White JC, Penny D, Kealhofer L, et al. Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand. Quatern Int. 2004;113(1):111–132. doi:10.1016/j.quaint.2003.09.001
  • Suraprasit K, Shoocongdej R, Chintakanon K, et al. Late Pleistocene human paleoecology in the highland savanna ecosystem of mainland Southeast Asia. Sci Rep. 2021;11(1):16756–16756. doi:10.1038/s41598-021-96260-4
  • Corcho Alvarado JA, Pačes T, Purtschert R. Dating groundwater in the Bohemian Cretaceous Basin: Understanding tracer variations in the subsurface. Appl Geochem. 2013;29:189–198. doi:10.1016/j.apgeochem.2012.11.014
  • Kersting A, Brander S, Suckow A. Modelling 85Kr datasets with python for applications in tracer hydrology and to investigate atmospheric circulation. MethodsX. 2021;8:101245–101245. doi:10.1016/j.mex.2021.101245
  • Kersting A, Schlosser C, Bollhöfer A, et al. Evaluating 5 decades of atmospheric 85Kr measurements in the southern hemisphere to derive an input function for dating water and ice with implications for interhemispheric circulation and the global 85Kr emission inventory. J Environ Radioact. 2020;225:106451. doi:10.1016/j.jenvrad.2020.106451
  • Suckow A. The age of groundwater – definitions, models and why we do not need this term. Appl Geochem. 2014;50:222–230. doi:10.1016/j.apgeochem.2014.04.016
  • Bethke CM, Johnson TM. Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci. 2008;36(1):121–152. doi:10.1146/annurev.earth.36.031207.124210
  • Cook P. Introduction to isotopes and environmental tracers as indicators of groundwater flow. Guelph: The Groundwater Project; 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.