83
Views
0
CrossRef citations to date
0
Altmetric
Hydrology & Hydrogeology

Stable isotope hydrology of surface and ground waters in King George Island, Antarctica

, &
Pages 412-425 | Received 27 Mar 2023, Accepted 09 Oct 2023, Published online: 17 Nov 2023

References

  • Pachauri RK, Allen MR, Barros VR, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer, editors]. Geneva: IPCC; 2014.
  • Walvoord MA, Kurylyk BL. Hydrologic impacts of thawing permafrost – a review. Vadose Zone J. 2016;15(6):1–20. doi:10.2136/vzj2016.01.0010
  • Hass HC, Kuhn G, Monien P, et al. Climate fluctuations during the past two millennia as recorded in sediments from Maxwell Bay, South Shetland Islands, West Antarctica. Geol Soc Spec Publ. 2010;344(1):243. doi:10.1144/SP344.17
  • Amesbury MJ, Roland TP, Royles J, et al. Widespread biological response to rapid warming on the Antarctic Peninsula. Curr Biol. 2017;27(11):1616–1622. doi:10.1016/j.cub.2017.04.034
  • Aracena C, González HE, Garcés-Vargas J, et al. Influence of summer conditions on surface water properties and phytoplankton productivity in embayments of the South Shetland Islands. Polar Biol. 2018;41(10):2135–2155. doi:10.1007/s00300-018-2338-x
  • Vaughan DG, Marshall GJ, Connolley WM, et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change. 2003;60(3):243–274. doi:10.1023/A:1026021217991
  • Rückamp M, Braun M, Suckro S, et al. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob Planet Change. 2011;79(1):99–109. doi:10.1016/j.gloplacha.2011.06.009
  • Turner J, Lu H, White I, et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature. 2016;535:411–415. doi:10.1038/nature18645
  • Gibson JJ, Birks SJ, Yi Y, et al. Runoff to boreal lakes linked to land cover, watershed morphology and permafrost thaw: a 9-year isotope mass balance assessment. Hydrol Process. 2015;29(18):3848–3861. doi:10.1002/hyp.10502
  • Arnoux M, Gibert-Brunet E, Barbecot F, et al. Interactions between groundwater and seasonally ice-covered lakes: using water stable isotopes and radon-222 multilayer mass balance models. Hydrol Process. 2017;31(14):2566–2581. doi:10.1002/hyp.11206
  • Ala-Aho P, Soulsby C, Pokrovsky OS, et al. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J Hydrol. 2018;556:279–293. doi:10.1016/j.jhydrol.2017.11.024
  • Welp L, Randerson J, Finlay J, et al. A high-resolution time series of oxygen isotopes from the Kolyma River: implications for the seasonal dynamics of discharge and basin-scale water use. Geophys Res Lett. 2005;32:L14401. doi:10.1029/2005GL022857
  • Zakharova E, Kouraev A, Kolmakova M, et al. The modern hydrological regime of the northern part of Western Siberia from in situ and satellite observations. Int J Environ Stud. 2009;66:447–463. doi:10.1080/00207230902823578
  • Delavau C, Sun C, Stadnyk T, et al. Time series modeling of precipitation isotopes (δ18O) across Canada and the northern United States. Water Resour Res. 2015;51(2):1284–1299. doi:10.1002/2014WR015687
  • Tetzlaff D, Piovano T, Ala-Aho P, et al. Using stable isotopes to estimate travel times in a data-sparse Arctic catchment: challenges and possible solutions. Hydrol Process. 2018;32(12):1936–1952. doi:10.1002/hyp.13146
  • Noon PE, Leng MJ, Jones VJ. Oxygen-isotope (δ18O) evidence of Holocene hydrological changes at Signy Island, maritime Antarctica. Holocene. 2003;13(2):251–263. doi:10.1191/0959683603hl611rp
  • Wand U, Hermichen W-D, Brüggemann E, et al. Stable isotope and hydrogeochemical studies of Beaver Lake and Radok Lake, MacRobertson Land, East Antarctica. Isot Environ Health Stud. 2011;47:407–414. doi:10.1080/10256016.2011.630465
  • Falk U, Sala H. Winter melt conditions of the inland ice cap on King George Island, Antarctic Peninsula. Erdkunde. 2015;69(4):341–363. doi:10.3112/erdkunde.2015.04.04
  • Gómez M, Concepción Ausín M, Carmen Domínguez M. Seasonal copula models for the analysis of glacier discharge at King George Island, Antarctica. Stoch Environ Res Risk Assess. 2017;31(5):1107–1121. doi:10.1007/s00477-016-1217-7
  • Sziło J, Bialik RJ. Bedload transport in two creeks at the ice-free area of the Baranowski Glacier, King George Island, West Antarctica. Pol Polar Res. 2017;38(1):21–39. doi:10.1515/popore-2017-0003
  • Falk U, Silva-Busso A, Pölcher P. A simplified method to estimate the run-off in periglacial creeks: a case study of King George Islands, Antarctic Peninsula. Philos Trans R Soc A. 2018;376(2122):20170166. doi:10.1098/rsta.2017.0166
  • Stowe M, Harris C, Hedding D, et al. Hydrogen and oxygen isotope composition of precipitation and stream water on sub-Antarctic Marion Island. Antarct Sci. 2018;30(2):83–92. doi:10.1017/S0954102017000475
  • Turner J, Colwell SR, Marshall GJ, et al. Antarctic climate change during the last 50 years. Int J Climatol. 2005;25:279–294. doi:10.1002/joc.1130
  • Headland RK. The island of South Georgia. Cambridge: Cambridge University Press; 1984.
  • Vieira G, Bockeim J, Guglielmin M, et al. Thermal state of permafrost and active-layer monitoring in the Antarctic: advances during the international polar year 2007–2009. Permafr Periglac Process. 2010;21(2):182–197. doi:10.1002/ppp.685
  • Meredith MP, Falk UA, Bers A, et al. Anatomy of a glacial meltwater discharge event in an Antarctic cove. Philos Trans R Soc A. 2018;376(2122):20170163. doi:10.1098/rsta.2017.0163
  • Quinton W, Hayashi M, Chasmer L. Permafrost-thaw-induced land-cover change in the Canadian subarctic: implications for water resources. Hydrol Process. 2011;25:152–158. doi:10.1002/hyp.7894
  • Peterson BJ, Holmes RM, McClelland JW, et al. Increasing river discharge to the Arctic Ocean. Science. 2002;298:2171–2173. doi:10.1126/science.1077445
  • Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature. 2005;438:303–309. doi:10.1038/nature04141
  • Yde JC, Knudsen NT, Steffensen JP, et al. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland. Hydrol Earth Syst Sci. 2016;20:1197–1210. doi:10.5194/hess-20-1197-2016
  • Gibson JJ, Edwards TWD, Birks SJ, et al. Progress in isotope tracer hydrology in Canada. Hydrol Process. 2005;19(1):303–327. doi:10.1002/hyp.5766
  • Bowen GJ. Isoscapes: spatial pattern in isotopic biogeochemistry. Annu Rev Earth Planet Sci. 2010;38(1):161–187. doi:10.1146/annurev-earth-040809-152429
  • Wassenaar LI, Athanasopoulos P, Hendry MJ. Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. J Hydrol. 2011;411(1–2):37–48. doi:10.1016/j.jhydrol.2011.09.032
  • Gat JR. Isotope hydrology – a study of the water cycle. Singapore: World Scientific; 2005; (Series on Environmental Science and Management; 6).
  • Noon PE, Leng M, Arrowsmith C, et al. Seasonal observations of stable isotope variations in a valley catchment, Signy Island, South Orkney Islands. Antarct Sci. 2002;14(4):333–342. doi:10.1017/S0954102002000159
  • Hatvani IG, Kern Z. Weighting alternatives for water stable isotopes: statistical comparison between station-and firn/ice-records. Pol Polar Res. 2017;38(2):105–124. doi:10.1515/popore-2017-0006
  • Mäusbacher R, Muller J, Munnich M, et al. Evolution of postglacial sedimentation in Antarctic lakes (King George Island). Z Geomorph. 1989;33(2):219–234. doi:10.1127/zfg/33/1989/219
  • Hernández AC, Bastias J, Matus D, et al. Provenance, transport and diagenesis of sediment in polar areas: a case study in Profound Lake, King George Island, Antarctica. Polar Res. 2018;37:1490619. doi:10.1080/17518369.2018.1490619
  • Fernandoy F, Meyer H, Tonelli M. Stable water isotopes of precipitation and firn cores from the northern Antarctic Peninsula region as a proxy for climate reconstruction. Cryosphere. 2012;6(2):313–330. doi:10.5194/tc-6-313-2012
  • Braun M, Hock R. Spatially distributed surface energy balance and ablation modelling on the ice cap of King George Island (Antarctica). Glob Planet Change. 2004;42(1):45–58. doi:10.1016/j.gloplacha.2003.11.010
  • Kim J, Jeen S-W, Lim HS, et al. Hydrogeological characteristics of groundwater and surface water associated with two small lake systems on King George Island, Antarctica. J Hydrol. 2020;590:125537. doi:10.1016/j.jhydrol.2020.125537
  • Bădăluță C-A, Perșoiu A, Ionita M, et al. Stable H and O isotope-based investigation of moisture sources and their role in river and groundwater recharge in the NE Carpathian Mountains, East-Central Europe. Isot Environ Health Stud. 2019;55:161–178. doi:10.1080/10256016.2019.1588895
  • International Atomic Energy Agency. Reference sheet for VSMOW2 and SLAP2 international measurement standards. Vienna: IAEA; 2017; 8 pp. (Rev 1 dated 2017-07-11, last accessed on August 26, 2023).
  • Jouzel J, Souchez RA. Melting refreezing at the glacier sole and the isotopic composition of the ice. J Glaciol. 1982;28:35–42. doi:10.3189/S0022143000011771
  • Perşoiu A, Onac BP, Wynn J, et al. Stable isotopes behavior during cave ice formation by water freezing in Scărişoara Ice Cave. J Geophys Res Atmos. 2011;116:D02111. doi:10.1029/2010JD014477
  • Lee J, Hur SD, Lim HS, et al. Isotopic characteristics of snow and its meltwater over the Barton Peninsula, Antarctica. Cold Reg Sci Technol. 2020;173:102997. doi:10.1016/j.coldregions.2020.102997
  • Taylor S, Feng X, Kirchner JW, et al. Isotopic evolution of a seasonal snowpack and its melt. Water Resour Res. 2001;37(3):759–769. doi:10.1029/2000WR900341
  • Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16(4):436–468. doi:10.1111/j.2153-3490.1964.tb00181.x
  • Craig H, Gordon LI. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E, editor. Stable isotopes in oceanographic studies and paleotemperatures. Pisa: Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare; 1965. p. 9–72.
  • Gonfiantini R, Wassenaar LI, Araguas-Araguas L, et al. A unified Craig–Gordon isotope model of stable hydrogen and oxygen isotope fractionation during fresh or saltwater evaporation. Geochim Cosmochim Acta. 2018;235:224–236. doi:10.1016/j.gca.2018.05.020
  • Posey JC, Smith HA. The equilibrium distribution of light and heavy waters in a freezing mixture. J Am Chem Soc. 1957;79:555–557. doi:10.1021/ja01560a015
  • Zhou S, Nakawo M, Hashimoto S, et al. The effect of refreezing on the isotopic composition of melting snowpack. Hydrol Process. 2008;22(6):873–882. doi:10.1002/hyp.6662
  • Lee J, Feng X, Faiia AM, et al. Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chem Geol. 2009;270:126–134. doi:10.1016/j.chemgeo.2009.11.011
  • Lee J, Feng X, Faiia A, et al. Isotopic evolution of snowmelt: a new model incorporating mobile and immobile water. Water Resour Res. 2010;46:W11512.
  • Gat JR. Lakes. In: Gat JR, Gonfiantini R, editors. Stable isotope hydrology – deuterium and oxygen-18 in the water cycle. Vienna: International Atomic Energy Agency; 1981. p. 203–221. (Technical Report Series; 210).
  • Gat JR. The isotopic composition of evaporating waters – review of the historical evolution leading up to the Craig–Gordon model. Isot Environ Health Stud. 2008;44:5–9. doi:10.1080/10256010801887067
  • Gibson JJ, Birks SJ, Yi Y. Stable isotope mass balance of lakes: a contemporary perspective. Quat Sci Rev. 2016;131:316–328. doi:10.1016/j.quascirev.2015.04.013
  • Gonfiantini R. Environmental isotopes in lake studies. In: Fritz P, Fontes JC, editors. Handbook of environmental isotope geochemistry. New York: Elsevier; 1986. Vol. 3, p. 113–168.
  • Moser H, Stichler W. Deuterium and oxygen-18 contents as an index of the properties of snow covers. Symposium at Grindelwald 1974 – Snow Mechanics; 1975. p. 122–135. (IAHS Publication; 114).
  • Satake H, Kawada K. The quantitative evaluation of sublimation and the estimation of original hydrogen and oxygen isotope ratios of a firn core at East Queen Maud Land, Antarctica. Bull Glaciol Res. 1997;15:93–97.
  • Stichler W, Schotterer U, Fröhlich K, et al. Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes. J Geophys Res Atmos. 2001;106(D19):22613–22620. doi:10.1029/2001JD900179

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.