86
Views
0
CrossRef citations to date
0
Altmetric
Ecology

A protocol for distilling animal body water from biological samples and measuring oxygen and hydrogen stable isotopes via cavity ring-down spectroscopy

, , , , &
Pages 229-250 | Received 30 Jun 2023, Accepted 01 Feb 2024, Published online: 12 Mar 2024

References

  • Newsome SD, Martinez del Rio C, Bearhop S, et al. A niche for isotopic ecology. Front Ecol Environ. 2007;5:429–436. doi:10.1890/1540-9295(2007)5[429:ANFIE]2.0.CO;2
  • Cucherousset J, Villéger S. Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecol Indic. 2015;56:152–160. doi:10.1016/j.ecolind.2015.03.032
  • Whiteman JP, Elliott Smith EA, Besser AC, et al. A guide to using compound-specific stable isotope analysis to study the fates of molecules in organisms and ecosystems. Diversity (Basel). 2019;11:8.
  • McCue MD, Javal M, Clusella-Trullaset S, et al. Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods Ecol Evol. 2020;11:196–214. doi:10.1111/2041-210X.13327
  • Bongiorni L, Fiorentino F, Auriemma R, et al. Food web of a confined and anthropogenically affected coastal basin (the Mar Piccolo of Taranto) revealed by carbon and nitrogen stable isotopes analyses. Environ Sci Pollut Res. 2016;23:12725–12738. doi:10.1007/s11356-015-5380-z
  • Tawa A, Ishihara T, Uematsu Y, et al. Evidence of westward transoceanic migration of Pacific bluefin tuna in the Sea of Japan based on stable isotope analysis. Mar Biol. 2017;164:94), doi:10.1007/s00227-017-3127-8
  • Rofes J, Garcia-Ibaibarriaga N, Aguirre M, et al. Combining small-vertebrate, marine and stable-isotope data to reconstruct past environments. Sci Rep. 2015;5:14219), doi:10.1038/srep14219
  • Vander Zanden HB, Soto DX, Bowen GJ, et al. Expanding the isotopic toolbox: applications of hydrogen and oxygen stable isotope ratios to food web studies. Front Ecol Evol. 2016;4:20), doi:10.3389/fevo.2016.00020
  • Whiteman JP, Sharp ZD, Gerson AR, et al. Relating Δ17O values of animal body water to exogenous water inputs and metabolism. BioScience. 2019;69:658–668. doi:10.1093/biosci/biz055
  • Andrews FM, Nadeau JA, Saabye L, et al. Measurement of total body water content in horses, using deuterium oxide dilution. Am J Vet Res. 1997;58:1060–1064. doi:10.2460/ajvr.1997.58.10.1060
  • Speakman JR. Doubly labelled water: theory and practice. New York (NY): Springer Scientific Publishers; 1997.
  • Bryant JD, Froelich PN. A model of oxygen isotope fractionation in body water of large mammals. Geochim Cosmochim Acta. 1995;59:4523–4537. doi:10.1016/0016-7037(95)00250-4
  • Kohn MJ. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim Cosmochim Acta. 1996;60:4811–4829. doi:10.1016/S0016-7037(96)00240-2
  • Pack A, Gehler A, Süssenberger A. Exploring the usability of isotopically anomalous oxygen in bones and teeth as paleo-CO2-barometer. Geochim Cosmochim Acta. 2013;102:306–317. doi:10.1016/j.gca.2012.10.017
  • Sabat P, Newsome SD, Pinochet S, et al. Triple oxygen isotope measurements (Δ’17O) of body water reflect water intake, metabolism, and δ18O of ingested water in passerines. Front Physiol. 2021;12:710026), doi:10.3389/fphys.2021.710026
  • Fancy SG, Blanchard JM, Holleman DF, et al. Validation of doubly labeled water method using a ruminant. Am J Physiol Regul Integr Comp Physiol. 1986;251:R143–R149. doi:10.1152/ajpregu.1986.251.1.R143
  • Hill RW, Wyse GA, Anderson M. Animal physiology. Sunderland (MA): Sinauer Associates; 2008.
  • Nguyen MK, Ornekian V, Butch AW, et al. A new method for determining plasma water content: application in pseudohyponatremia. Am J Physiol Renal Physiol. 2007;292:F1652–F1656. doi:10.1152/ajprenal.00493.2006
  • Murray IW, Fuller A, Lease HM, et al. The actively foraging desert lizard Pedioplanis husabensis (Husab Sand Lizard) behaviorally optimizes its energetic economy. Can J Zool. 2014;92:905–913. doi:10.1139/cjz-2014-0086
  • Smit B, Woodborne S, Wolf BO, et al. Differences in the use of surface water resources by desert birds are revealed using isotopic tracers. Auk. 2019;136:uky005), doi:10.1093/auk/uky005
  • Wood RA, Nagy KA, MacDonald NS, et al. Determination of oxygen-18 in water contained in biological samples by charged particle activation. Anal Chem. 1975;47:646–650. doi:10.1021/ac60354a038
  • Nagy KA. The doubly labeled water (3HH18O) method: A guide to its use. Los Angeles (CA): Laboratory of Biomedical and Environmental Sciences, University of California; UCLA Publication; No.12-1417; 1983.
  • Thorsen T, Shriver T, Racine N, et al. Doubly labeled water analysis using cavity ring-down spectroscopy. Rapid Commun Mass Spectrom. 2011;25:3–8. doi:10.1002/rcm.4795
  • Melanson EL, Swibas T, Kohrt WM, et al. Validation of the doubly labeled water method using off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry. Am J Physiol Endocrinol Metab. 2018;314:E124–E130. doi:10.1152/ajpendo.00241.2017
  • Barkan E, Luz B. Diffusivity fractionations of H216O/H217O and H216O/H218O in air and their implications for isotope hydrology. Rapid Commun Mass Spectrom. 2007;21:2999–3005. doi:10.1002/rcm.3180
  • Steig EJ, Gkinis V, Schauer AJ, et al. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance. Atmos Meas Tech. 2014;7:2421–2435. doi:10.5194/amt-7-2421-2014
  • Clayton RN, Grossman L, Mayeda TK. A component of primitive nuclear composition in carbonaceous meteorites. Science. 1973;182:485–488. doi:10.1126/science.182.4111.485
  • Luz B, Barkan E, Bender m, et al. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature. 1999;400:547–550. doi:10.1038/22987
  • Thiemens MH. Mass-independent isotope effects in planetary atmospheres and the early Solar System. Science. 1999;283:341–345. doi:10.1126/science.283.5400.341
  • Bindeman IN, Eiler JM, Wing BA, et al. Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochim Cosmochim Acta. 2007;71:2326–2343. doi:10.1016/j.gca.2007.01.026
  • Lehmann SB, Levin NE, Passey BH, et al. Triple oxygen isotope distribution in modern mammal teeth and potential geologic applications. Geochim Cosmochim Acta. 2022;331:105–122. doi:10.1016/j.gca.2022.04.033
  • Hu H, Passey BH, Lehmann SB, et al. Modeling and interpreting triple oxygen isotope variations in vertebrates, with implications for paleoclimate and paleoecology. Chem Geol. 2023;642:121812), doi:10.1016/j.chemgeo.2023.121812
  • Feng D, Tütken T, Löffler N, et al. Isotopically anomalous metabolic oxygen in marine vertebrates as physiology and atmospheric proxy. Geochim Cosmochim Acta. 2022;328:85–102. doi:10.1016/j.gca.2022.05.008
  • Navarrete L, Lübcker N, Alvarez F, et al. A multi-isotope approach reveals seasonal variation in the reliance on marine resources, production of metabolic water, and ingestion of seawater by two species of coastal passerine to maintain water balance. Front Ecol Evol. 2023;11:1120271), doi:10.3389/fevo.2023.1120271
  • Wostbrock JA, Cano EJ, Sharp ZD. An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2. Chem Geol. 2020;533:119432), doi:10.1016/j.chemgeo.2019.119432
  • Schauer AJ, Schoenemann SW, Steig EJ. Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy. Rapid Commun Mass Spectrom. 2016;30:2059–2069. doi:10.1002/rcm.7682
  • Landais A, Barkan E, Luz B. Record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years. Geophys Res Lett. 2008;35:L02709.
  • Landais A, Ekaykin A, Barkan E, et al. Seasonal variations of 17O-excess and d-excess in snow precipitation at Vostok station, East Antarctica. J Glaciol. 2012;58:725–733. doi:10.3189/2012JoG11J237
  • Aron PG, Levin NE, Beverly EJ, et al. Triple oxygen isotopes in the water cycle. Chem Geol. 2021;565:120026), doi:10.1016/j.chemgeo.2020.120026
  • Li S, Levin NE, Soderberg K, et al. Triple oxygen isotope composition of leaf waters in Mpala, central Kenya. Earth Planet Sci Lett. 2017;468:38–50. doi:10.1016/j.epsl.2017.02.015
  • Landais A, Barkan E, Yakir D, et al. The triple isotopic composition of oxygen in leaf water. Geochim Cosmochim Acta. 2006;70:4105–4115. doi:10.1016/j.gca.2006.06.1545
  • Voigt C, Alexandre A, Reiter IM, et al. Examination of the parameters controlling the triple oxygen isotope composition of grass leaf water and phytoliths at a Mediterranean site: a model–data approach. Biogeosciences. 2023;20:2161–2187. doi:10.5194/bg-20-2161-2023
  • Kahmen A, Schefuß E, Sachse D. Leaf water deuterium enrichment shapes leaf wax n–alkane δD values of angiosperm plants I: Experimental evidence and mechanistic insights. Geochim Cosmochim Acta. 2013;111:39–49. doi:10.1016/j.gca.2012.09.003
  • Zhou Y, Grice K, Chikaraishi Y, et al. Temperature effect on leaf water deuterium enrichment and isotopic fractionation during leaf lipid biosynthesis: results from controlled growth of C3 and C4 land plants. Phytochemistry. 2011;72:207–213. doi:10.1016/j.phytochem.2010.10.022
  • Newsome SD, Clementz MT, Koch PL. Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mammal Sci. 2010;26:509–572.
  • Crowley BE. Stable isotope techniques and applications for primatologists. Int J Primatol. 2012;33:673–701. doi:10.1007/s10764-012-9582-7
  • Vallet-Coulomb C, Couapel M, Sonzogni C. Improving memory effect correction to achieve high-precision analysis of δ17O, δ18O, δ2H, 17O-excess and d-excess in water using cavity ring-down laser spectroscopy. Rapid Commun Mass Spectrom. 2021;35:e9108), doi:10.1002/rcm.9108
  • Li S, Levin NE, Chesson LA. Continental scale variation in 17O-excess of meteoric waters in the United States. Geochim Cosmochim Acta. 2015;164:110–126. doi:10.1016/j.gca.2015.04.047
  • Turk D, Bedard JM, Burt WJ, et al. Inorganic carbon in a high latitude estuary-fjord system in Canada’s eastern Arctic. Estuar Coast Shelf Sci. 2016;178:137–147. doi:10.1016/j.ecss.2016.06.006
  • Hutchings JA, Konecky BL. Optimization of a Picarro L2140-i cavity ring-down spectrometer for routine measurement of triple oxygen isotope ratios in meteoric waters. Atmos Meas Tech. 2023;16:1663–1682. doi:10.5194/amt-16-1663-2023
  • Schoenemann SW, Schauer AJ, Steig EJ. Measurement of SLAP2 and GISP δ17O and proposed VSMOW-SLAP normalization for δ17O and 17Oexcess. Rapid Commun Mass Spectrom. 2013;27:582–590. doi:10.1002/rcm.6486
  • Berman ES, Levin NE, Landais A, et al. Measurement of δ18O, δ17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry. Anal Chem. 2013;85:10392–10398. doi:10.1021/ac402366t
  • Sharp Z. Stable isotope geochemistry. Upper Saddle River (NJ): Pearson Prentice Hall; 2007.
  • Dunn PJH, Carter JF. Good practice guide for isotope ratio mass spectrometry. Bristol: Forensic Isotope Ratio Mass Spectrometry Network; 2018.
  • Usgs.gov. Reston, VA: United States Geological Survey; 2021. https://isotopes.usgs.gov/research/topics/lims.html#:~:text=What%20is%20%22LIMS%20for%20Light,thousand%20isotopic%20analyses%20per%20year.
  • Qi H, Coplen TB, Tarbox L, et al. USGS48 Puerto Rico precipitation – a new isotopic reference material for δ2H and δ18O measurements of water. Isotopes Environ Health Stud. 2014;50:442–447. doi:10.1080/10256016.2014.905555

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.