Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 20, 2017 - Issue 5
317
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Mauritia flexuosa L. protects against deficits in memory acquisition and oxidative stress in rat hippocampus induced by methylmercury exposure

, , , , , , , , & show all

References

  • Basilea A, Ferrara L, Del Pezzo M, Mele G, Sorbo S, Bassi P, et al. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana. Mart J Ethnopharmacol 2005;102:32–6. doi: 10.1016/j.jep.2005.05.038
  • Castro-e-Silva O. Jr, Zucoloto S, Ramalho FS, Ramalho LNZ, Reis JMC, Bastos AAC, et al. Antiproliferative activity of Copaifera duckei oleoresin on liver regeneration in rats. Phytother Res 2004;18:92–4. doi: 10.1002/ptr.1351
  • Desmarchelier C, Ciccia G, Coussio J. Recent advances in the search for antioxidant activity in South American plants. Stud Nat Prod Chem 2000;22:343–67. doi: 10.1016/S1572-5995(00)80030-7
  • Giorgetti M, Negri G, Rodrigues, E. Brazilian plants with possible action on the central nervous system – a study of historical sources from the 16th to 19th century. J Ethnopharmacol 2007;109:338–47. doi: 10.1016/j.jep.2006.08.003
  • Campos-Esparza MR, Sánchez-Gómez MV, Matute, C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium 2009;45:358–68. doi: 10.1016/j.ceca.2008.12.007
  • Farina M, Franco JL, Ribas CM, Meotti FC, Missau FC, Pizzolatti MG, et al. Protective effects of Polygala paniculata extract against methylmercury-induced neurotoxicity in mice. J Pharm Pharmacol 2005;11:1503–8. doi: 10.1211/jpp.57.11.0017
  • Kumar B, Smita K, Flores LC. Plant mediated detoxification of mercury and lead. Arabian J Chem 2014. doi:10.1016/j.arabjc.2013.08.010.
  • Lucena GM, Franco JL, Ribas CM, Azevedo MS, Meotti FC, Gadotti VM, et al. Cipura paludosa extract prevents methyl mercury-induced neurotoxicity in mice. Basic Clin Physiol Pharmacol 2007;101:127–31. doi: 10.1111/j.1742-7843.2007.00091.x
  • Rice-Evans C. Flavonoid antioxidants. Curr Med Chem 2001;8:797–807. doi: 10.2174/0929867013373011
  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 1996;20:933–56. doi: 10.1016/0891-5849(95)02227-9
  • Meotti FC, Fachinetto R, Maffiet LC. Antinociceptive action of myricitrin: involvement of the K+ and Ca2+ channels. Eur J Pharmacol 2007;567:198–205. doi: 10.1016/j.ejphar.2007.03.039
  • Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63:1035–42. doi: 10.1021/np9904509
  • Pietta P, Simonetti P, Gardana C, Mauri P. Trolox equivalent antioxidant capacity (TEAC) of Ginkgo biloba flavonol and Camellia sinensis catechin metabolites. J Pharm Biomed Anal 2000;23:223–6. doi: 10.1016/S0731-7085(00)00272-7
  • Ribeiro BD, Coelho MAZ, Barreto DW. Production of concentrated natural beta-carotene from buriti (Mauritia vinifera) oil by enzymatic hydrolysis. Food Bioprod Process 2012;90:141–7. doi: 10.1016/j.fbp.2011.02.003
  • Zanatta CF, Mitjans M, Urgatondo V, Rocha-Filho PA, Vinardell MP. Photoprotective potential of emulsions formulated with Buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines. Food Chem Toxicol 2010;48:70–5. doi: 10.1016/j.fct.2009.09.017
  • Albuquerque MLS, Guedes I, Alcantara Jr, P, Moreira SGC. Infrared absorption spectra of Buriti (Mauritia flexuosa L.) oil. Vib Spectrosc 2003;33:127–31. doi: 10.1016/S0924-2031(03)00098-5
  • Delgado C, Couturier G, Mejia K. Mauritia flexuosa (Arecaceae: Calamoideae), in Amazonian palm with cultivation purposes in Peru. Fruits 2007; 62:157–69. doi: 10.1051/fruits:2007011
  • Kahn F, Granville JJ. Palms in forest ecosystems of Amazonia. Ecological Studies 95. Berlin Heidelberg: Springer-Verlag; 1992. p. 226.
  • Kahn F, Meija K. Palm communities in wetland forest ecosystems of Peruvian Amazonia. For Ecol Manage 1990;33/34:169–79. doi: 10.1016/0378-1127(90)90191-D
  • Passos CJS, Mergler D, Gaspar E, Moraes S, Lucotte M, Larribe F, et al. Eating tropical fruit reduces mercury exposure from fish consumption in the Brazilian Amazon. Environ Res 2003;93:123–30. doi: 10.1016/S0013-9351(03)00019-7
  • Passos CJS, Mergler D, Fillion M, Lemire M, Mertens F, Guimarães JRD, et al. Epidemiologic confirmation that fruit consumption influences mercury exposure in riparian communities in the Brazilian Amazon. Environ Res 2007;105:183–93. doi: 10.1016/j.envres.2007.01.012
  • França LF, Reber G, Meireles MAA, Machado NT, Brunner G. Supercritical extraction of carotenoids and lipids from buriti (Mauritia flexuosa), a fruit from the Amazon region. J Supercrit Fluids 1999;14:247–56. doi: 10.1016/S0896-8446(98)00122-3
  • Mariath JG, Lima M, Santos L. Vitamin A activity of buriti (Mauritia flexuosa Mart and its effectiveness in the treatment and prevention of xerophtalmia. Am J Clin Nutr 2010;49:849–53.
  • Bear MF. A synaptic basis for memory storage in the cerebral cortex. PNAS 1996;93:13453–9. doi: 10.1073/pnas.93.24.13453
  • Castoldi AF, Coccini T, Ceccatelli S, Manzo L. Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 2001;55:197–203. doi: 10.1016/S0361-9230(01)00458-0
  • Glover CN, Zheng D, Jayashankar S, Sales GD, Hogstrand C, Lundebye AK. Methylmercury speciation influences brain gene expression and behaviour in gestationally-exposed mice pups. Toxicol Sci 2009;110:389–400. doi: 10.1093/toxsci/kfp105
  • Rezayat M, Niasari H, Ahmadi S, Parsaei L, Zarrindast M. N-methyl-d-aspartate receptors are involved in lithium-induced state-dependent learning in mice. J Psychopharmacol 2010;24:915–21. doi: 10.1177/0269881108100093
  • Watanabe C, Satoh, H. Evolution of our understanding of methylmercury as a health threat. Environ Health Perspect 1996;104:367–79. doi: 10.1289/ehp.96104s2367
  • Aschner M, Syversen T, Souza DO, Rocha JBT, Farina M. Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 2007;40:285–91. doi: 10.1590/S0100-879X2007000300001
  • Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 2001;1:529–39. doi: 10.2174/1568026013394831
  • Farina M, Rocha JBT, Ascher M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 2011;89:555–63. doi: 10.1016/j.lfs.2011.05.019
  • Suyama S, Takano E, Iwasaki Y, Nakata M, Yada T. Roles and functional interplay of the gut, brain stem, hypothalamus and limbic system in regulation of feeding. Jpn J Clin Med 2009;67:277–86.
  • Steuerwald U, Weihe P, Jorgensen PJ, Bjerve K, Brock J, Heinzow B. Maternal seafood diet, methylmercury exposure and neonatal neurologic function. J Pediatr 2000;136:599–605. doi: 10.1067/mpd.2000.102774
  • Brown NJ. Mercury pollution with specific reference to the Amazon basis. M. Sc. Thesis. London: University of London, Imperial College of Science, Technology and Medicine; 1990.
  • Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Guzmán Bernardo FJ, Jiménez Moreno M, Herculano AM, Do Nascimento JLM, et al. Mercury in the Tapajós River basin, Brazilian Amazon: a review. Environ Int 2010;36:593–608. doi: 10.1016/j.envint.2010.03.011
  • Crespo-López ME, Macêdo GL, Arrifano GPF, Pinheiro MCN, Do Nascimento JLM, Herculano AM. Genotoxicity of mercury: contributing for the analysis of Amazonian populations. Environ Int 2011;37:136–41. doi: 10.1016/j.envint.2010.08.009
  • Pinheiro MCN, Oikawa T, Vieira JLF, Gomes MSV, Guimarães GA, Crespo-López ME, et al. Comparative study of human exposure to mercury in riverside communities in the Amazon region. Braz J Med Biol Res 2006;39:411–4. doi: 10.1590/S0100-879X2006000300012
  • Pinheiro MCN, Crespo-López ME, Vieira JLF, Oikawa T, Guimarães GA, Araújo CC, et al. Mercury pollution and childhood in Amazon riverside villages. Environ Int 2007;33:56–61. doi: 10.1016/j.envint.2006.06.024
  • Pinheiro MC, Macchi BM, Vieira JL, Oikawa T, Amoras WW, Guimarães GA, et al. Mercury exposure and antioxidant defenses in women: a comparative study in the Amazon. Environ Res 2008;107:53–9. doi: 10.1016/j.envres.2007.08.007
  • Pinheiro MC, Farripas SS, Oikawa T, Costa CA, Amoras WW, Vieira JL, et al. Temporal evolution of exposure to mercury in riverside communities in the Tapajós basin, from 1994 to 2010. Bull Environ Contam Toxicol 2012;89:119–24. doi: 10.1007/s00128-012-0652-5
  • Crespo-López ME, Herculano AM, Corvelo TC, Do Nascimento JL. Mercury and neurotoxicity. Rev Neurol 2005;40:441–7.
  • Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Jiménez Moreno M, Do Nascimento JLM, Herculano AM, Crespo-López ME. Mercury speciation analysis on cell lines of the human central nervous system to explain genotoxic effects. Microchem J 2009;93:12–6. doi: 10.1016/j.microc.2009.03.008
  • Carta P, Flore C, Alinovi R, Ibba A, Tocco MG, Aru G, et al. Sub-clinical neurobehavioral abnormalities associated with low level of mercury exposure through fish consumption. Neurotoxicology 2003;24:617–23. doi: 10.1016/S0161-813X(03)00080-9
  • Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 2003;36:609–62. doi: 10.1080/10408440600845619
  • Crespo-López ME, De SÁ AL, Herculano AM, Burbano RR, Do Nascimento, JLM. Methylmercury genotoxicity: a novel effect in human cell lines of the central nervous system. Environ Int 2007;33:141–6. doi: 10.1016/j.envint.2006.08.005
  • Maximino C, Araujo J, Leão LKR, Grisolia ABA, Oliveira KRM, Lima MG, et al. Possible role of serotoninergic system in the neurobehavioral impairment induced by acute methylmercury exposure in zebrafish (Danio rerio). Neurotoxicol Teratol 2011;33:727–34. doi: 10.1016/j.ntt.2011.08.006
  • Nierenberg DW, Nordgren RE, Chang MB, Siegler RW, Blayney MB, Hochberg F, et al. Delayed cerebellar disease and death after accidental exposure to dimethylmercury. N Engl J Med 1998;338:1672–6. doi: 10.1056/NEJM199806043382305
  • Myers GJ, Thurston SW, Pearson AT. Postnatal exposure to methylmercury from fish consumption: a review and new data from the Seychelles Child Development Study. NeuroToxicology 2009;30:338–49. doi: 10.1016/j.neuro.2009.01.005
  • Bereau D, Benjelloun-Mlayah B, Banoub J, Bravo R. FA and unsaponifiable composition of five Amazonian palm kernel oils. J Am Oil Chem Soc 2003;80:49–53. doi: 10.1007/s11746-003-0649-5
  • McDonald RJ, Hong NS. How does a specific learning and memory system in the mammalian brain gain control of behavior? Hippocampus 2013;23(11):1084–102. doi: 10.1002/hipo.22177
  • Vincente E, Boer M, Netto C, Fochesatto C, Dalmaz C, Rodrigues SI, et al. Hippocampal antioxidant system in neonates from methylmercury-intoxicated rats. Neurotoxicol Teratol 2004;26(6):817–23. doi: 10.1016/j.ntt.2004.08.003
  • Wu J, Cheng G, Lu Z, Wang M, Tian J, Bi Y. Effects of methyl mercury chloride on rat hippocampus structure. Biol Trace Elem Res 2015. [Epub ahead of print], 1–7.
  • Zangrossi H Jr, Graeff FG. Behavioral validation of the elevated T-maze, a new animal model of anxiety. Brain Res Bull 1997;44:1–5. doi: 10.1016/S0361-9230(96)00381-4
  • Graeff FG, Viana MB, Tomaz C. The elevated T maze, a new experimental model of anxiety and memory: effect of diazepam. Braz J Med Biol Res 1993;26:67–70.
  • Graeff FG, Viana MB, Mora PO. Opposed regulation by dorsal raphe nucleus 5-HT pathways of two types of fear in the elevated T-maze. Pharmacol Biochem Behav 1996;53:171–7. doi: 10.1016/0091-3057(95)02012-8
  • Bernehim F, Bernehim MLC, Wilbur KM. The reaction between thiobarbituric and the oxidation products of certain lipids. J Biol Chem 1948;174:257–64.
  • Uchiyama M, Mihara M. Determination of malonaldehyde in tissues by thiobarbituric acid test. Anal Biochem 1978;86:271–8. doi: 10.1016/0003-2697(78)90342-1
  • Heinrich M, Dhanji T, Casselman I. Açai (Euterpe oleracea Mart.)—a phytochemical and pharmacological assessment of the species’ health claims. Phytochem Lett 2011;4:10–21. doi: 10.1016/j.phytol.2010.11.005
  • Matheus ME, Bessa SOF, Silveira CS, Rodrigues VP, Menezes F, Fernandes, PD. Inhibitory effects of Euterpe oleracea Mart. on nitric oxide production and iNOS expression. J Ethnopharmacol 2006;107:291–6. doi: 10.1016/j.jep.2006.03.010
  • Schauss AG, Wu RL, Ou B, Patel D, Huang D, Kababick JP. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry Euterpe oleracea Mart. (açaí). J Agric Food Chem 2006;54:8598–603. doi: 10.1021/jf060976g
  • Mottet NK, Vahter ME, Charleston JS, Friberg LT. Metabolism of methylmercury in the brain and its toxicological significance. Met Ions Biol Syst 1984;34:371–401.
  • Toimela T, Tähti H. Mitochondrial viability and apoptosis induced by aluminium, mercuric mercury and methylmercury in cell lines of neural origin. Arch Toxicol 2004;78:565–74. doi: 10.1007/s00204-004-0575-y
  • Liu W, Wang X, Zhang R, Zhou Y. Effects of postnatal exposure to methylmercury on spatial learning and memory and brain NMDA receptor mRNA expression in rats. Toxicol Lett 2009;5:188–230.
  • Sakamoto M, Kakita A, Wakabayashi K, Takahashi H, Nakano A, Akagi H. Evaluation of changes in methylmercury accumulation in the developing rat brain and its effects: a study with consecutive and moderate dose exposure throughout gestation and lactation periods. Brain Res 2002;949:51–9. doi: 10.1016/S0006-8993(02)02964-5
  • Sakamoto M, Kakita A, De Oliveira RB, Sheng Pan H, Takahashi H. Dose dependent effects of methylmercury administered during neonatal brain spurt in rats. Dev Brain Res 2004;152:171–6. doi: 10.1016/j.devbrainres.2004.06.016
  • WHO. Methylmercury in Environmental Health Criteria 101, Geneva: World Health Organization; 1990. 118, p. 144.
  • Maia CSF, Ferreira VMM, Diniz JSV, Carneiro FP, Sousa JB, Costa ET, et al. Inhibitory avoidance acquisition in adult rats exposed to a combination of ethanol and methylmercury during central nervous system development. Behav Brain Res 2010;211:191–7. doi: 10.1016/j.bbr.2010.03.032
  • Dietrich MO, Mantese CE, Dos Anjos G, Souza DO, Farina M. Motor impairment induced by oral exposure to methylmercury in adult mice. Environ Toxicol Pharmacol 2005;19:169–75. doi: 10.1016/j.etap.2004.07.004
  • Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, et al. Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol 2007;20:1919–26. doi: 10.1021/tx7002323
  • Ali SF, Lebel CP, Bondy SC. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. NeuroToxicology 1992;3:637–48.
  • Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009;7:65–74. doi: 10.2174/157015909787602823
  • Yee S, Choi BH. Oxidative stress in neurotoxic effects of methylmercury poisoning. NeuroToxicology 1996;17:17–26.
  • Cui Y, Ge Z, Rizak JD, Zhai C, Zhou Z, Gong S, et al. Deficits in water maze performance and oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure. PLoS One 2012;7(5):e32196. doi: 10.1371/journal.pone.0032196
  • Silva RH, Abílio VC, Takatsu AL, Kameda SR, Grassl C, Chehin AB, et al. Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Int J Neuropharmacol 2004;46:895–903. doi: 10.1016/j.neuropharm.2003.11.032
  • Huang TT, Leu D, Zou Y. Oxidative stress and redox regulation on hippocampal dependent cognitive functions. Arch Biochem Biophys 2015;576:2–7. doi: 10.1016/j.abb.2015.03.014
  • Head E. Oxidative damage and cognitive dysfunction: antioxidant treatments to promote healthy brain aging. Neurochem Res 2009;34(4):670–8. doi: 10.1007/s11064-008-9808-4
  • Albuquerque MLS, Guedes I, Alcantara JRP, Moreira SGC, Barbosa Neto N, Correa DS, et al. Characterization of buriti (Mauritia flexuosa L.) oil by absorption and emission spectoscopies. J Braz Chem Soc 2005;16:1113–7. doi: 10.1590/S0103-50532005000700004
  • Lde M, Pinheiro SS, da Silva LL, de Menezes CB, de Carvalho CW, Tardin FD, et al. Tocochromanols and carotenoids in sorghum (Sorghum bicolor L.): diversity and stability to the heat treatment. Food Chem 2015;172:900–8. doi: 10.1016/j.foodchem.2014.09.117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.