Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 20, 2017 - Issue 7
334
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Effects of β-hydroxy-β-methyl butyrate on working memory and cognitive flexibility in an animal model of aging

, , , , , , , & ORCID Icon show all

References

  • Erickson C, Barnes C. The neurobiology of memory changes in normal aging. Exp Gerontol 2003;38:61–9. doi: 10.1016/S0531-5565(02)00160-2
  • Harada CN, Natelson Love MC, Triebel K. Normal cognitive aging. Clin Geriatr Med 2013;29:737–52. doi: 10.1016/j.cger.2013.07.002
  • Park D, Schwarz N, editors. Cognitive aging: a primer. Philadelphia, PA: Psychology Press; 2000.
  • Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, et al. Prevalence of cognitive impairment without dementia in the United States. Ann Intern Med 2008;148:427–34. doi: 10.7326/0003-4819-148-6-200803180-00005
  • Albert SM, Tabert MH, Dienstag A, Pelton G, Devanand D. The impact of mild cognitive impairment on functional abilities in the elderly. Curr Psychiatry Rep 2002;4:64–8. doi: 10.1007/s11920-002-0015-8
  • Vincent GK, Velkoff VA. The next four decades the older population in the United States: 2010 to 2050. Washington, DC: U.S. Census Bureau; 2010. P25–1138. Curr Popul Reports 2011.
  • de Brabander J, Kramers R, Uylings H. Layer-specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex. Eur J Neurosci 1998;10:1261–9. doi: 10.1046/j.1460-9568.1998.00137.x
  • Jacobs B, Driscoll L, Schall M. Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 1997;386:661–80. doi: 10.1002/(SICI)1096-9861(19971006)386:4<661::AID-CNE11>3.0.CO;2-N
  • Peters A, Sethares C, Luebke J. Synapses are lost during aging in the primate prefrontal cortex. Neuroscience 2008;152:970–81. doi: 10.1016/j.neuroscience.2007.07.014
  • Peters A, Sethares C. Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol 2002;442:277–91. doi: 10.1002/cne.10099
  • Toepper M, Markowitsch HJ, Gebhardt H, Beblo T, Bauer E, Woermann FG, et al. The impact of age on prefrontal cortex integrity during spatial working memory retrieval. Neuropsychologia 2014;59:157–68. doi: 10.1016/j.neuropsychologia.2014.04.020
  • Chang YM, Rosene DL, Killiany RJ, Mangiamele LA, Luebke JI. Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cereb Cortex 2005;15:409–18. doi: 10.1093/cercor/bhh144
  • Guidi M, Kumar A, Foster TC. Impaired attention and synaptic senescence of the prefrontal cortex involves redox regulation of NMDA receptors. J Neurosci 2015;35:3966–77. doi: 10.1523/JNEUROSCI.3523-14.2015
  • Luine V, Bowling D, Hearns M. Spatial memory deficits in aged rats: contributions of monoaminergic systems. Brain Res 1990;537:271–8. doi: 10.1016/0006-8993(90)90368-L
  • Gage F, Kelly P, Björklund A. Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. J Neurosci 1984;4:2856–65.
  • Markham JA, Juraska JM. Aging and sex influence the anatomy of the rat anterior cingulate cortex. Neurobiol Aging 2002;23:579–88. doi: 10.1016/S0197-4580(02)00004-0
  • Barense MD, Fox MT, Baxter MG. Aged rats are impaired on an attentional set-shifting task sensitive to medial frontal cortex damage in young rats. Learn Mem 2002;9:191–201. doi: 10.1101/lm.48602
  • Beas BS, Setlow B, Bizon JL. Distinct manifestations of executive dysfunction in aged rats. Neurobiol Aging 2013;34:2164–74. doi: 10.1016/j.neurobiolaging.2013.03.019
  • Nicolle MM, Baxter MG. Glutamate receptor binding in the frontal cortex and dorsal striatum of aged rats with impaired attentional set-shifting. Eur J Neurosci 2003;18:3335–42. doi: 10.1111/j.1460-9568.2003.03077.x
  • Chisholm NC, Kim T, Juraska JM. Males, but not females, lose tyrosine hydroxylase fibers in the medial prefrontal cortex and are impaired on a delayed alternation task during aging. Behav Brain Res 2013;243:239–46. doi: 10.1016/j.bbr.2013.01.009
  • Prediger RDS, De-Mello N, Takahashi RN. Pilocarpine improves olfactory discrimination and social recognition memory deficits in 24 month-old rats. Eur J Pharmacol 2006;531:176–82. doi: 10.1016/j.ejphar.2005.12.032
  • Soffie M, Lejeune H. Acquisition and long-term retention of a two-lever DRL schedule: comparison between mature and aged rats. Neurobiol Aging 1991;12:25–30. doi: 10.1016/0197-4580(91)90035-I
  • Gilbert RJ, Mitchell MR, Simon NW, Bañuelos C, Setlow B, Bizon JL. Risk, reward, and decision-making in a rodent model of cognitive aging. Front Neurosci 2012;5:144. doi:10.3389/fnins.2011.00144. doi: 10.3389/fnins.2011.00144
  • Morris MC. Nutritional determinants of cognitive aging and dementia. Proc Nutr Soc 2012;71:1–13. doi: 10.1017/S0029665111003296
  • Yurko-Mauro K. Cognitive and cardiovascular benefits of docosahexaenoic acid in aging and cognitive decline. Curr Alzheimer Res 2010;7:190–6. doi: 10.2174/156720510791050911
  • Mastroiacovo D, Kwik-uribe C, Grassi D, Necozione S, Raffaele A, Pistacchio L, et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) Study – a randomized controlled trial. Am J Clin Nutr 2015;101:538–48. doi: 10.3945/ajcn.114.092189
  • Desideri G, Kwik-Uribe C, Grassi D, Necozione S, Ghiadoni L, Mastroiacovo D, et al. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: the cocoa, cognition, and aging (CoCoA) study. Hypertension 2012;60:794–801. doi: 10.1161/HYPERTENSIONAHA.112.193060
  • Nissen S, Sharp R, Ray M, Rathmacher J, Rice D, Fuller JC, et al. Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 1996;81:2095–104.
  • Wilson GJ, Wilson JM, Manninen AH. Effects of beta-hydroxybeta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: a review. Nutr Metab (Lond) 2008;5: 1. doi: 10.1186/1743-7075-5-1
  • Santos-Fandila A, Zafra-Gómez A, Barranco A, Navalón A, Rueda R, Ramírez M. Quantitative determination of β-hydroxymethylbutyrate and leucine in culture media and microdialysates from rat brain by UHPLC-tandem mass spectrometry. Anal Bioanal Chem 2014;406:2863–72. doi: 10.1007/s00216-014-7694-y
  • Zanchi NE, Gerlinger-Romero F, Guimarães-Ferreira L, De Siqueira Filho MA, Felitti V, Lira FS, et al. HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids 2011;40:1015–25. doi: 10.1007/s00726-010-0678-0
  • Salto R, Vílchez JD, Girón MD, Cabrera E, Campos N, Manzano M, et al. β-Hydroxy-β-methylbutyrate (HMB) promotes neurite outgrowth in neuro2a cells. PLoS One 2015;10: 8. e0135614. doi: 10.1371/journal.pone.0135614
  • Gerlinger-Romero F, Guimarães-Ferreira L, Nunes M. Chronic supplementation of beta-hydroxy-beta methylbutyrate (HMβ) increases the activity of the GH/IGF-I axis and induces hyperinsulinemia in rats. Growth Horm IGF Res 2011;21:57–62. doi: 10.1016/j.ghir.2010.12.006
  • Sonntag W, Lynch C, Bennett S, Khan A, Thornton P, Cooney P, et al. Alterations in insulin-like growth factor-1 gene and protein expression and type 1 insulin-like growth factor receptors in the brains of ageing rats. Neuroscience 1999;88:269–79. doi: 10.1016/S0306-4522(98)00192-4
  • Kougias DG, Nolan SO, Koss WA, Kim T, Hankosky ER, Gulley JM, Juraska JM. Beta-hydroxy-beta-methylbutyrate (HMB) ameliorates aging effects in the dendritic tree of pyramidal neurons in the medial prefrontal cortex of both male and female rats. Neurobiol Aging, 2016. doi:10.1016/j.neurobiolaging.2016.01.004
  • Wise P, Ratner A. Effect of ovariectomy on plasma LH, FSH, estradiol, and progesterone and medial basal hypothalamic LHRH concentrations old and young rats. Neuroendocrinology 1980;30:15–9. doi: 10.1159/000122968
  • National Research Council (US) Committee. Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academies Press (US); 2011.
  • Sherrill LK, Koss WA, Foreman ES, Gulley JM. The effects of pre-pubertal gonadectomy and binge-like ethanol exposure during adolescence on ethanol drinking in adult male and female rats. Behav Brain Res 2011;216:569–75. Available at: doi:10.1016/j.neurobiolaging.2016.01.004
  • Sherrill LK, Stanis JJ, Gulley JM. Age-dependent effects of repeated amphetamine exposure on working memory in rats. Behav Brain Res 2013;242:84–94. doi: 10.1016/j.bbr.2012.12.044
  • Hankosky ER, Kofsky NM, Gulley JM. Age of exposure-dependent effects of amphetamine on behavioral flexibility. Behav Brain Res 2013;252:117–25. doi: 10.1016/j.bbr.2013.06.002
  • Floresco SB, Block AE, Tse MTL. Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 2008;190:85–96. doi: 10.1016/j.bbr.2008.02.008
  • Chudasama Y, Muir JL. A behavioural analysis of the delayed non matching to position task: the effects of scopolamine, lesions of the fornix and of the prelimbic region on mediating behaviours by rats. Psychopharmacology (Berl) 1997;134:73–82. doi: 10.1007/s002130050427
  • Sloan HL, Good M, Dunnett SB. Double dissociation between hippocampal and prefrontal lesions on an operant delayed matching task and a water maze reference memory task. Behav Brain Res 2006;171:116–26. doi: 10.1016/j.bbr.2006.03.030
  • Zeamer A, Decamp E, Clark K, Schneider JS. Attention, executive functioning and memory in normal aged rhesus monkeys. Behav Brain Res 2011;219:23–30. doi: 10.1016/j.bbr.2010.12.021
  • Fidalgo C, Conejo NM, González-Pardo H, Arias JL. Dynamic functional brain networks involved in simple visual discrimination learning. Neurobiol Learn Mem 2014;114:165–70. doi: 10.1016/j.nlm.2014.06.001
  • Winocur G, Eskes G. Prefrontal cortex and caudate nucleus in conditional associative learning: dissociated effects of selective brain lesions in rats. Behav Neurosci 1998;112:89–101. doi: 10.1037/0735-7044.112.1.89
  • Hovens IB, van Leeuwen BL, Nyakas C, Heineman E, van der Zee EA, Schoemaker RG. Postoperative cognitive dysfunction and microglial activation in associated brain regions in old rats. Neurobiol Learn Mem 2015;118:74–9. doi: 10.1016/j.nlm.2014.11.009
  • Heikkinen T, Puoliväli J, Tanila H. Effects of long-term ovariectomy and estrogen treatment on maze learning in aged mice. Exp Gerontol 2004;39:1277–83. doi: 10.1016/j.exger.2004.05.005
  • Fortress AM, Fan L, Orr PT, Zhao Z, Frick KM. Estradiol-induced object recognition memory consolidation is dependent on activation of mTOR signaling in the dorsal hippocampus. Learn Mem 2013;20:147–55. doi: 10.1101/lm.026732.112
  • Frick KM. Molecular mechanisms underlying the memory-enhancing effects of estradiol. Horm Behav. 2015;74:4–18. htt://dx.doi.org/10.1016/j.yhbeh.2015.05.001.
  • Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 2009;9:324–37. doi: 10.1038/nri2546
  • Bizon JL, LaSarge CL, Montgomery KS, McDermott AN, Setlow B, Griffith WH. Spatial reference and working memory across the lifespan of male Fischer 344 rats. Neurobiol Aging 2009;30:646–55. doi: 10.1016/j.neurobiolaging.2007.08.004
  • Harati H, Majchrzak M, Cosquer B, Galani R, Kelche C, Cassel JC, et al. Attention and memory in aged rats: Impact of lifelong environmental enrichment. Neurobiol Aging 2011;32:718–36. doi: 10.1016/j.neurobiolaging.2009.03.012
  • Muir JL, Fischer W, Björklund A. Decline in visual attention and spatial memory in aged rats. Neurobiol Aging 1999;20:605–15. doi: 10.1016/S0197-4580(99)00098-6
  • Deak F, Sonntag WE. Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. J Gerontol A Biol Sci Med Sci 2012;67A:611–25. doi: 10.1093/gerona/gls118
  • Potter WB, O'Riordan KJ, Barnett D, Osting SMK, Wagoner M, Burger C, et al. Metabolic regulation of neuronal plasticity by the energy sensor AMPK. PLoS One 2010;5:2. doi:10.1371/journal.pone.0008996.
  • Aleman A, Torres-Alemán I. Circulating insulin-like growth factor I and cognitive function: neuromodulation throughout the lifespan. Prog Neurobiol 2009;89:256–65. doi: 10.1016/j.pneurobio.2009.07.008
  • Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 1995;92:8856–60. doi: 10.1073/pnas.92.19.8856
  • Nelson TJ, Sun MK, Hongpaisan J, Alkon DL. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 2008;585:76–87. doi: 10.1016/j.ejphar.2008.01.051
  • Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005;17:596–603. doi: 10.1016/j.ceb.2005.09.009
  • Yan H, Mitschelen M, Bixler GV, Brucklacher RM, Farley JA, Han S, et al. Circulating IGF1 regulates hippocampal IGF1 levels and brain gene expression during adolescence. J Endocrinol 2011;211:27–37. doi: 10.1530/JOE-11-0200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.