Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 20, 2017 - Issue 7
836
Views
36
CrossRef citations to date
0
Altmetric
Reviews

The role of taurine in improving neural stem cells proliferation and differentiation

, &

References

  • Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis 2012;18:2673–86.
  • Wu JY, Prentice H. Role of taurine in the central nervous system. J Biomed Sci 2010;17(Suppl. 1):S1. doi: 10.1186/1423-0127-17-S1-S1
  • El Idrissi A, Shen CH, L'Amoreaux WJ. Neuroprotective role of taurine during aging. Amino acids 2013;45:735–50. doi: 10.1007/s00726-013-1544-7
  • Kumari N, Prentice H, Wu JY. Taurine and its neuroprotective role. Adv Exp Med Biol 2013;775:19–27. doi: 10.1007/978-1-4614-6130-2_2
  • Xu S, He M, Zhong M, Li L, Lu Y, Zhang Y, et al. The neuroprotective effects of taurine against nickel by reducing oxidative stress and maintaining mitochondrial function in cortical neurons. Neurosci Lett 2015;590:52–7. doi: 10.1016/j.neulet.2015.01.065
  • Hernandez-Benitez R, Pasantes-Morales H, Saldana IT, Ramos-Mandujano G. Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res 2010;88:1673–81.
  • Shivaraj MC, Marcy G, Low G, Ryu JR, Zhao X, Rosales FJ, et al. Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS ONE 2012;7:e42935. doi: 10.1371/journal.pone.0042935
  • Ramos-Mandujano G, Hernandez-Benitez R, Pasantes-Morales H. Multiple mechanisms mediate the taurine-induced proliferation of neural stem/progenitor cells from the subventricular zone of the adult mouse. Stem Cell Res 2014;12:690–702. doi: 10.1016/j.scr.2014.02.009
  • Pasantes-Morales H, Ramos-Mandujano G, Hernandez-Benitez R. Taurine enhances proliferation and promotes neuronal specification of murine and human neural stem/progenitor cells. Adv Exp Med Biol 2015;803:457–72. doi: 10.1007/978-3-319-15126-7_36
  • Lambert IH, Kristensen DM, Holm JB, Mortensen OH. Physiological role of taurine – from organism to organelle. Acta Physiol 2015;213:191–212. doi: 10.1111/apha.12365
  • Vitvitsky V, Garg SK, Banerjee R. Taurine biosynthesis by neurons and astrocytes. J Biol Chem 2011;286:32002–10. doi: 10.1074/jbc.M111.253344
  • Anderson CM, Howard A, Walters JR, Ganapathy V, Thwaites DT. Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+-coupled PAT1 (SLC36A1) and Na+- and Cl(-)-dependent TauT (SLC6A6). J Physiol 2009;587:731–44. doi: 10.1113/jphysiol.2008.164228
  • Tappaz ML. Taurine biosynthetic enzymes and taurine transporter: molecular identification and regulations. Neurochem Res 2004;29:83–96. doi: 10.1023/B:NERE.0000010436.44223.f8
  • Oja SS, Saransaari P. Open questions concerning taurine with emphasis on the brain. Adv Exp Med Biol 2015;803:409–13. doi: 10.1007/978-3-319-15126-7_31
  • Spriet LL, Whitfield J. Taurine and skeletal muscle function. Curr Opin Clin Nutr Metab Care 2015;18:96–101. doi: 10.1097/MCO.0000000000000135
  • Ma N, Wang S, Okita S, Kato T, Huang S, Lu C, et al. Contribution of taurine signatures in the detached cat retina. Adv Exp Med Biol 2015;803:439–47. doi: 10.1007/978-3-319-15126-7_34
  • Sturman JA, Moretz RC, French JH, Wisniewski HM. Taurine deficiency in the developing cat: persistence of the cerebellar external granule cell layer. Prog Clin Biol Res 1985;179:43–52.
  • Palackal T, Neuringer M, Sturman J. Laminar analysis of the number of neurons, astrocytes, oligodendrocytes and microglia in the visual cortex (area 17) of 6- and 12-month-old rhesus monkeys fed a human infant soy-protein formula with or without taurine supplementation from birth. Dev Neurosci 1993;15:54–67. doi: 10.1159/000111317
  • Neuringer M, Palackal T, Kujawa M, Moretz RC, Sturman JA. Visual cortex development in rhesus monkeys deprived of dietary taurine. Prog Clin Biol Res 1990;351:415–22.
  • Neuringer M, Sturman JA, Wen GY, Wisniewski HM. Dietary taurine is necessary for normal retinal development in monkeys. Prog Clin Biol Res 1985;179:53–62.
  • Pasantes-Morales H, Hernandez-Benitez R. Taurine and brain development: trophic or cytoprotective actions? Neurochem Res 2010;35:1939–43. doi: 10.1007/s11064-010-0262-8
  • Foos TM, Wu JY. The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 2002;27:21–6. doi: 10.1023/A:1014890219513
  • Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, et al. Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res 2001;66:612–619. doi: 10.1002/jnr.10027
  • Mishra OP, Zubrow AB, Ashraf QM, Delivoria-Papadopoulos M. Effect of nitric oxide synthase inhibition during post-hypoxic reoxygenation on Bax and Bcl-2 protein expression and DNA fragmentation in neuronal nuclei of newborn piglets. Brain Res 2006;1101:20–8. doi: 10.1016/j.brainres.2006.05.021
  • Mishra OP, Randis T, Ashraf QM, Delivoria-Papadopoulos M. Hypoxia-induced Bax and Bcl-2 protein expression, caspase-9 activation, DNA fragmentation, and lipid peroxidation in mitochondria of the cerebral cortex of newborn piglets: the role of nitric oxide. Neuroscience 2006;141:1339–49. doi: 10.1016/j.neuroscience.2006.05.005
  • Liu J, Wang XF, Wang Y, Wang HW, Liu Y. The incidence rate, high-risk factors, and short- and long-term adverse outcomes of fetal growth restriction: a report from Mainland China. Medicine 2014;93:e210. doi: 10.1097/MD.0000000000000210
  • Liu J, Liu L, Chen H. Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction. Neuroscience 2011;181:265–70. doi: 10.1016/j.neuroscience.2011.02.056
  • Liu J, Liu L, Wang XF, Teng HY, Yang N. Antenatal supplementation of taurine for protection of fetal rat brain with intrauterine growth restriction from injury by reducing neuronal apoptosis. Neuropediatrics 2012;43:258–63. doi: 10.1055/s-0032-1324730
  • Liu J, Liu Y, Wang XF, Chen H, Yang N. Antenatal taurine supplementation improves cerebral neurogenesis in fetal rats with intrauterine growth restriction through the PKA-CREB signal pathway. Nutr Neurosci 2013;16:282–7. doi: 10.1179/1476830513Y.0000000057
  • Liu J, Wang X, Liu Y, Yang N, Xu J, Ren X. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction. Neural Regen Res 2013;8:2190–7.
  • Liu J, Wang HW, Liu F, Wang XF. Antenatal taurine improves neuronal regeneration in fetal rats with intrauterine growth restriction by inhibiting the Rho-ROCK signal pathway. Metab Brain Dis 2015;30:67–73. doi: 10.1007/s11011-014-9572-x
  • Maggi R, Zasso J, Conti L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front Cell Neurosci 2014;8:440.
  • Wade A, McKinney A, Phillips JJ. Matrix regulators in neural stem cell functions. Biochim Biophys Acta 2014;1840:2520–5. doi: 10.1016/j.bbagen.2014.01.017
  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707–10. doi: 10.1126/science.1553558
  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn C. Nordborg AM, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313–7. doi: 10.1038/3305
  • Urban N, Guillemot F. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 2014;8:10484. doi: 10.3389/fncel.2014.00396
  • Hernandez-Benitez R, Ramos-Mandujano G, Pasantes-Morales H. Taurine stimulates proliferation and promotes neurogenesis of mouse adult cultured neural stem/progenitor cells. Stem cell Res 2012;9:24–34. doi: 10.1016/j.scr.2012.02.004
  • Hernandez-Benitez R, Vangipuram SD, Ramos-Mandujano G, Lyman WD, Pasantes-Morales H. Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification. Dev Neurosci 2013;35:40–9. doi: 10.1159/000346900
  • Ramasamy S, Narayanan G, Sankaran S, Yu YH, Ahmed S. Neural stem cell survival factors. Arch Biochem Biophys 2013;534:71–87. doi: 10.1016/j.abb.2013.02.004
  • Jaeger A, Frohlich M, Klum S, Lantow M, Viergutz T, Weiss DG, et al. Characterization of apoptosis signaling cascades during the differentiation process of human neural ReNcell VM progenitor cells in vitro. Cell Mol Neurobiol 2015;35:1203–16. doi: 10.1007/s10571-015-0213-7
  • Briscoe J, Therond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013;14:418–31. doi: 10.1038/nrm3598
  • Polizio AH, Chinchilla P, Chen X, Manning DR, Riobo NA. Sonic Hedgehog activates the GTPases Rac1 and RhoA in a Gli-independent manner through coupling of smoothened to Gi proteins. Sci Signal 2011;4:pt7. doi: 10.1126/scisignal.2002396
  • Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005;437:1370–5. doi: 10.1038/nature04108
  • Fradkin LG, Dura JM, Noordermeer JN. Ryks: new partners for Wnts in the developing and regenerating nervous system. Trends Neurosci 2010;33:84–92. doi: 10.1016/j.tins.2009.11.005
  • An JY, Seo JW, Tasaki T, Lee MJ, Varshavsky A, Kwon YT. Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc Natl Acad Sci U S A 2006;103:6212–7. doi: 10.1073/pnas.0601700103
  • Johansson CB, Svensson M, Wallstedt L, Janson AM, Frisen J. Neural stem cells in the adult human brain. Exp Cell Res 1999;253:733–6. doi: 10.1006/excr.1999.4678
  • Rubenstein JL. Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry Allied Disciplines 2011;52:339–355. doi: 10.1111/j.1469-7610.2010.02307.x
  • Huang T, Xie Z, Wang J, Li M, Jing N, Li L. Nuclear factor of activated T cells (NFAT) proteins repress canonical Wnt signaling via its interaction with Dishevelled (Dvl) protein and participate in regulating neural progenitor cell proliferation and differentiation. J Biol Chem 2011;286:37399–405. doi: 10.1074/jbc.M111.251165
  • Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 2005;132:335–44. doi: 10.1242/dev.01567
  • Anderson C, Williams VC, Moyon B, Daubas P, Tajbakhsh S, Buckingham ME, et al. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity. Genes Dev 2012;26:2103–17. doi: 10.1101/gad.187807.112
  • Ihrie RA, Shah JK, Harwell CC, Levine JH, Guinto CD, Lezameta M, et al. Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron 2011;71:250–62. doi: 10.1016/j.neuron.2011.05.018
  • Jong CJ, Ito T, Mozaffari M, Azuma J, Schaffer S. Effect of beta-alanine treatment on mitochondrial taurine level and 5-taurinomethyluridine content. J Biomed Sci 2010;17(Suppl. 1):S25. doi: 10.1186/1423-0127-17-S1-S25
  • Hansen SH, Birkedal H, Wibrand F, Grunnet N. Taurine and regulation of mitochondrial metabolism. Adv Exp Med Biol 2015;803:397–405. doi: 10.1007/978-3-319-15126-7_30
  • Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, Grunnet N, et al. A maternal low protein diet has pronounced effects on mitochondrial gene expression in offspring liver and skeletal muscle; protective effect of taurine. J Biomed Sci 2010;17(Suppl. 1):S38. doi: 10.1186/1423-0127-17-S1-S38
  • Hansen SH, Grunnet N. Taurine, glutathione and bioenergetics. Adv Exp Med Biol 2013;776:3–12. doi: 10.1007/978-1-4614-6093-0_1
  • Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino acids 2012;42:2223–32. doi: 10.1007/s00726-011-0962-7
  • Ostrakhovitch EA, Byers JC, O'Neil KD, Semenikhin OA. Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT-PEG and ITO glass substrates. Arch Biochem Biophys 2012;528:21–31. doi: 10.1016/j.abb.2012.08.006
  • Hansen SH, Andersen ML, Cornett C, Gradinaru R, Grunnet N. A role for taurine in mitochondrial function. J Biomed Sci 2010;17(Suppl. 1):S23. doi: 10.1186/1423-0127-17-S1-S23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.