Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 20, 2017 - Issue 9
403
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Facilitation of brain mitochondrial activity by 5-aminolevulinic acid in a mouse model of Alzheimer's disease

, , , , , , , , , , , , & show all

References

  • Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and loss enzymatic activities on aging. Ann J Physiol Regul Integr Comp Physiol 2004;287:R1244–9. doi: 10.1152/ajpregu.00226.2004
  • Bratic A, Larsson N-G. The role of mitochondria in aging. J Clin Invest 2013;123:951–7. doi: 10.1172/JCI64125
  • Stocco DM, Cascarano J, Wilson MA. Quantitation of mitochondrial DNA, RNA, and protein in starved and starved-refed rat liver. J Cell Physiol 1977;90:295–306. doi: 10.1002/jcp.1040900215
  • Maure I, Zierz S, Moller H-J. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 2000;21:455–62. doi: 10.1016/S0197-4580(00)00112-3
  • Heinemann I, Jahn M, Jahn D. The biochemistry of heme biosynthesis. Arch Biochem Biophys 2008;474:238–51. doi: 10.1016/j.abb.2008.02.015
  • Fukuda H, Casas A, Batle A. Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. Int J Biochem Cell Biol 2005;37:272–6. doi: 10.1016/j.biocel.2004.04.018
  • Onyango IG, Dennis J, Khan SM. Mitochondrial dysfunction in Alzheimer's disease and the rationale for bioenergetics based therapies. Aging Dis 2016;7:201–14. doi: 10.14336/AD.2015.1007
  • Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharm Exp Ther 2012;342:619–30. doi: 10.1124/jpet.112.192138
  • Kalra J, Kumar P, Majeed ABA, Prakash A. Modulation of LOX and COX pathways via inhibition of amyloidogenesis contributes to mitoprotection against β-amyloid oligomer-induced toxity in an animal model of Alzheimer's disease in rats. Pharma Biochem Behav 2016;146–147:1–12. doi: 10.1016/j.pbb.2016.04.002
  • Wang L, Guo L, Sun H, Shao M, Beck SJ, Li L, et al. Synaptosomal mitochondrial dysfunction in 5xFAD mouse model of Alzheimer's disease. PLoS One 2016;11:e0150441. doi: 10.1371/journal.pone.0150441
  • Ogura S, Maruyama K, Hagiya Y, Sugiyama Y, Tsuchiya K, Takahashi K, et al. The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver. BMC Res Notes 2011;4:66. doi: 10.1186/1756-0500-4-66
  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer's disease plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 2003;39:409–21. doi: 10.1016/S0896-6273(03)00434-3
  • Oishi M, Nairn AC, Czernik AJ, Lim GS, Isohara T, Gandy SE, et al. The cytoplasmic domain of Alzheimer's amyloid precursor protein is phosphorylated at Thr654, Ser655, and Thr668 in adult rat brain and cultured cells. Mol Med 1997;3:111–23.
  • Zhao J, Fu Y, Yasvoina M, Shao P, Hitt B, O'Connor T, et al. Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer's disease pathogenesis. J Neurosci 2007;27:3639–49. doi: 10.1523/JNEUROSCI.4396-06.2007
  • Morohashi Y, Kan T, Tominari Y, Okamura Y, Watanabe N, Sato C, et al. C-terminal fragment of presenilin is the molecular target of a dipeptidic γ-secretase-specific inhibitor DAPT (N-[N-(3,5-difluorophenenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester). J Biol Chem 2006;281:14670–6. doi: 10.1074/jbc.M513012200
  • Kondo M, Shiono M, Itoh G, Takei N, Matsushima T, Maeda M, et al. Increased amyloidogenic processing of transgenic human APP in X11-like deficient mouse brain. Mol Neurodegener 2010;5:35. doi: 10.1186/1750-1326-5-35
  • Billings LM, Oddo S, Green KN, McGaugh JL, LaFeria FM. Intraneuronal Aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 2005;45:675–88. doi: 10.1016/j.neuron.2005.01.040
  • Lesne SE, Sherman MA, Grant M, Kuskowski M, Schneider JA, Bennett DA, et al. Brain amyloid-β oligomers in aging and Alzheimer's disease. Brain 2013;136:1383–98. doi: 10.1093/brain/awt062
  • Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008;283:29615–9. doi: 10.1074/jbc.R800019200
  • Cole SL, Vassar R. The role of amyloid precursor protein processing by BACE1, the β-secretase, in Alzheimer disease pathophysiology. J Biol Chem 2008;283:29621–5. doi: 10.1074/jbc.R800015200
  • Steinwr H, Fluhrer R, Haass C. Intramembrane proteolysis by g-secretase. J Biol Chem 2008;283:29627–31. doi: 10.1074/jbc.R800010200
  • Suzuki T, Nakaya T. Regulation of amyloid β-protein precursor by phosphorylation and protein interactions. J Biol Chem 2008;283:29633–7. doi: 10.1074/jbc.R800003200
  • Darten DM, Cadelina GW, Hoque N, DeCarr LB, Guss VL, Yang L, et al. Tau transgenic mice as models for cerebrospinal fluid tau biomarkers. J Alzheimers Dis 2011;24:1–15.
  • Oh K-J, Perez SE, Lagalwar S, Vana L, Binder L, Mufson EJ. Staging of Alzheimer's pathology in triple transgenic mice: a light and electron microscopic analysis. Int J Alzheimer Dis 2010;ID780102.
  • Kwong LK, Sohal RS. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 2001;373:16–22. doi: 10.1006/abbi.1999.1495
  • Cardoso SM, Proenca MT, Santos S, Santana I, Oliveria CR. Cytochrome c oxidase is decreased in Alzheimer's disease platelets. Neurobiol Aging 2004;25:105–10. doi: 10.1016/S0197-4580(03)00033-2
  • Kish SJ, Mastrogiacomo F, Guttman M, Furukawa Y, Taanman JW, Dozic S, et al. Decreased brain protein levels of cytochrome oxidase subunits in Alzheimer's disease and in herediary soinocerebellar ataxia disorders: a nonspecific change? J Neurochem 1993;72:700–7. doi: 10.1046/j.1471-4159.1999.0720700.x
  • Atamna H, Liu J, Ames BN. Heme deficiency selectively interrupts assembly of mitochondrial complex IV in human fibroblasts. J Biol Chem 2001;276:48410–6. doi: 10.1074/jbc.M108362200
  • Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci 2012;15:349–57. doi: 10.1038/nn.3028
  • Gandy S, DeKosky ST. Toward the treatment and prevention of Alzhemer's disease: rational strategies and recent progress. Ann Rev Med 2013;64:367–83. doi: 10.1146/annurev-med-092611-084441
  • Suzuki T, Araki Y, Yamamoto T, Nakaya T. Trafficking of Alzheimer's disease-related membrane proteins and its participation in disease pathogenesis. J Biochem 2006;139:949–55. doi: 10.1093/jb/mvj121
  • Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 2005;307:1282–8. doi: 10.1126/science.1105681
  • Araki Y, Kawano T, Taru H, Saito Y, Wada S, Miyamoto K, et al. The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport. EMBO J 2007;26:1475–86. doi: 10.1038/sj.emboj.7601609
  • Morel M, Heraud C, Nicaise C, Suain V, Brion JP. Level of kinesin light cgain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer's disease: implications for axoplasmic transport. Acta Neuropathol 2012;123:71–84. doi: 10.1007/s00401-011-0901-4
  • Chiba K, Araseki M, Nozawa K, Furukori K, Araki Y, Matsushima T, et al. Quantitative analysis of APP axonal transport in neuron: role of JIP1 in enhanced APP anterograde transport. Mol Biol Cell 2014;25:3569–80. doi: 10.1091/mbc.E14-06-1111
  • Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 2009;10:682–96. doi: 10.1038/nrm2774

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.