Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 20, 2017 - Issue 10
133
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Chemical afferent vagal axotomy blocks re-intake after partial withdrawal of gastric food contents

, &

References

  • Shukla AP, Buniak WI, Aronne LJ. Treatment of obesity in 2015. J Cardiopulm Rehabil Prev 2015;35:81–92.
  • Yumuk V, Tsigos C, Fried M, Schindler K, Busetto L, Micic D, et al. Obesity management task force of the European association for the study of obesity. European guidelines for obesity management in adults. Obes Facts 2015;8:402–24.
  • Gibbs J, Maddison SP, Rolls ET. Satiety role of the small intestine examined in sham-feeding rhesus monkeys. J Comp Physiol Psychol 1981;95:1003–15.
  • Powley TL, Chi MM, Schier LA, Phillips RJ. Obesity: should treatments target visceral afferents? Physiol Behav 2005;86:698–708.
  • Wirth JB, Mchugh PR. Gastric distension and short-term satiety in the rhesus monkey. Am J Physiol Regulatory Integrative Comp Physiol 1983;245:R174–80.
  • Gonzalez MF, Deutsch JA. Vagotomy abolishes cues of satiety produced by gastric distension. Science 1981;212:1283–4.
  • Phillips RJ, Powley TL. Gastric volume rather than nutrient content inhibits food intake. Am J Physiol Regul Integr Comp Physiol 1996;271:R766–79.
  • Ritter RC. Gastrointestinal mechanisms of satiation for food. Physiol Behav 2004;81:249–73.
  • Davis JD, Campbell CS. Peripheral control of meal size in the rat: effect of sham feeding on meal size and drinking rate. J Comp Physiol Psychol 1973;83:379–87.
  • Deutsch JA, Young WG, Kalogeris TJ. The stomach signals satiety. Science 1978;201:165–7.
  • Kaplan JM, Siemers WH, Grill HJ. Ingestion, gastric emptying before and after withdrawal of gastric contens. Am J Physiol Regul Integr Comp Physiol 1994;267:R1257–65.
  • Snowdon CT. Gastrointestinal sensory and motor control of food intake. J Comp Physiol Psychol 1970;71:68–76.
  • Berthoud HR. Vagal and hormonal gut–brain communication: from satiation to satisfaction. Neurogastroenterol Motil 2008;20(Suppl. 1):64–72.
  • Camilleri M. Peripheral mechanisms in appetite regulation. Gastroenterology 2015;148:1219–33.
  • Berthoud HR, Blackshaw LA, Brookes JH, Grundy D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil 2004;16(Suppl. 1):28–33.
  • Sengupta JN, Gebhart GF. Gastrointestinal afferent fibers and sensation. In: Johnson LR, (eds.) Physiology of the gastrointestinal tract. New York: Raven; 1994. p. 483–519.
  • Ritter RC, Ritter S, Ewart WR, Wingate L. Capsaicin attenuates hindbrain neuron responses to circulating cholecystokinin. Am J Physiol Regul Integr Comp Physiol 1989;257:R1162–68.
  • Schwartz GJ. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition 2000;16:866–73.
  • Snowdon CT, Epstein AN. Oral and intragastric feeding in vagotomized rats. J Comp Physiol Psychol 1970;71:59–67.
  • Mordes JP, El Lozy M, Herrera MG, Silen W. Effects of vagotomy with and without pyloroplasty on weight and food intake in rats. Am J Physiol Regul Integr Comp Physiol 1979;236:R61–6.
  • Louis-Sylvestre J. Validation of tests of completeness of vagotomy in rats. J Auton Nerv Syst 1983;9:301–14.
  • Smith GP, Jerome C, Gibbs J. Abdominal vagotomy does not block the satiety effect of bombesin in the rat. Peptides 1981;2:409–11.
  • Ladenheim EE, Ritter RC. Capsaicin attenuates bombesin-induced suppression of food intake. Am J Physiol Regul Integr Comp Physiol 1991;260(2 Pt 2):R263–6.
  • Novin D, Sanderson J, Gonzalez M. Feeding after nutrient infusions: effects of hypothalamic lesions and vagotomy. Physiol Behav 1979;22:107–13.
  • Cox JE, Kelm GR, Meller ST, Spraggins DS, Randich A. Truncal and hepatic vagotomy reduce suppression of feeding by jejunal lipid infusions. Physiol Behav 2004;81:29–36.
  • Phillips RJ, Powley TL. Gastric volume detection after selective vagotomies in rats. Am J Physiol Regul Integr Comp Physiol 1998;43:R766–79.
  • Jancsó G, Kiraly E, Such G, Joo F, Nagy A. Neurotoxic effect of capsaicin in mammals. Acta Physiol Hung 1987;69:295–313.
  • Hölzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 1991;43:143–201.
  • Prechtl JC, Powley TP. The fiber composition of the abdominal vagus of the rat. Anat Embryol 1990;181:101–15.
  • Berthoud HR, Neuhuber WL. Distribution and morphology of vagal afferents supplying the digestive system. In: Taché Y, Wiggate DL, Burks TF, (eds.) Innervation of the gut: pathophysiological implications. Boca Raton: CRC; 1994. p. 43–66.
  • Raybould HE, Taché Y. Capsaicin-sensitive vagal afferent fibers and stimulation of gastric acid secretion in anesthetized rats. Eur J Pharmacol 1989;167:237–43.
  • Hölzer HH, Raybould HE. Vagal and splanchnic sensory pathways mediate inhibition of gastric motility induced by duodenal distension. Am J Physiol Gastrointest Liver Physiol 1992;262:G603–8.
  • Wang EM, Li WT, Yan XJ, Chen X, Liu Q, Feng CC, et al. Vagal afferent-dependent cholecystokinin modulation of visceral pain requires central amygdala NMDA-NR2B receptors in rats. Neurogastroenterol Motil 2015;27:1333–43.
  • Ritter RC, Ladenheim EE. Capsaicin pretreatment attenuates suppression of food intake by cholecystokinin. Am J Physiol Regul Integr Comp Physiol 1985;248:R501–4.
  • Chavez M, Kelly L, York DA, Berthoud HR. Chemical lesion of visceral afferents causes transient overconsumption of unfamiliar high-fat diet in rats. Am J Physiol Regul Integr Comp Physiol 1997;272:R1657–63.
  • Kelly LA, Chavez M, Berthoud HR. Transient overconsumption of novel foods by deafferentated rats: effects of novel diet composition. Physiol Behav 1999;65:793–800.
  • Zafra MA, Molina F, Puerto A. Effects of perivagal administration of capsaicin on post-surgical food intake. Auton Neurosci 2003;107:37–44.
  • Zafra MA, Molina F, Puerto A. Effects of perivagal administration of capsaicin on food intake in animals after noxious gastric surgery. Auton Neurosci 2004;116:84–8.
  • Zafra MA, Molina F, Puerto A. Learned flavor preferences induced by intragastric administration of rewarding nutrients: role of capsaicin-sensitive vagal afferent fibers. Am J Physiol Regul Integr Comp Physiol 2007;293:R635–64.
  • Lloyd KCK, Hölzer HH, Zittel TT, Raybould HE. Duodenal lipid inhibits gastric acid secretion by vagal, capsaicin-sensitive afferent pathways in rats. Am J Physiol Gastrointest Liver Physiol 1993;264:G659–63.
  • Wright SA, Washington MC, Garcia C, Sayegh AI. Gastrin releasing peptide-29 requires vagal and splanchnic neurons to evoke satiation and satiety. Peptides 2012;33:125–31.
  • Zielinski MR, Dunbrasky DL, Taishi P, Souza G, Krueger JM. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice. Sleep 2013;36:1227–38.
  • Deutsch JA, Koopmans HS. Preference enhancement for alcohol by passive exposure. Science 1973;179:1242–3.
  • Martin JR, Cheng FY, Novin D. Acquisition of learned taste aversion following bilateral subdiaphragmatic vagotomy in rats. Physiol Behav 1978;21:13–7.
  • Rogers RC, Mctigue DM, Hermann GE. Vagovagal reflex control of digestion: afferent modulation by neural and “endoneurocrine” factors. Am J Physiol Gastrointest Liver Physiol 1995;268:G1–10.
  • Bertaccini G, Scarpignato C. Histamine H2-antagonists modify gastric emptying in the rat. Br J Pharmacol 1982;77:443–8.
  • Uchida M, Endo N, Shimizu K. Simple and noninvasive breath test using 13C-acetic acid to evaluate gastric emptying in conscious rats and its validation by metoclopramide. J Pharmacol Sci 2005;98:388–95.
  • Ko JL, Tsai CH, Liu TC, Lin MY, Lin HL, Ou CC. Differential effects of grape juice on gastric emptying and renal function from cisplatin-induced acute adverse toxicity. Hum Exp Toxicol 2015:1–10. doi:10.1177/0960327115607079.
  • Campfield LA, Smith FJ, LeMagnen J. Altered endocrine pancreatic function following vagotomy: possible behavioral and metabolic bases for assessing completeness of vagotomy. Auton Nerv Syst 1983;9:283–300.
  • Baptista V, Browning KN, Travagli RA. Effects of cholecystokinin-8s in the nucleus tractus solitarius of vagally deafferented rats. Am J Physiol Regul Integr Comp Physiol 2007;292:R1092–100.
  • Viard E, Zheng Z, Wan S, Travagli RA. Vagally mediated, nonparacrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion. Am J Physiol Gastrointest Liver Physiol 2007;293:G493–500.
  • Browning KN, Babic T, Holmes GM, Swartz E, Travagli RA. A critical re-evaluation of the specificity of action of perivagal capsaicin. J Physiol 2013;591(Pt 6):1563–80.
  • Raybould HE. The heat is on: does direct application of capsaicin to autonomic nerves produce a specific deafferentation? J Physiol 2013;591(Pt 6):1405.
  • Raybould HE, Hölzer P, Reddy SN, Yang H, Taché Y. Capsaicin-sensitive vagal afferents contribute to gastric acid and vascular responses to intracisternal TRH analog. Peptides 1990;11:789–95.
  • Hölzer P. Neural injury, repair, and adaptation in the GI tract II. The elusive action of capsaicin on the vagus nerve. Am J Physiol Gastrointest Liver Physiol 1998;275:G8–13.
  • Kaplan JM, Spector AC, Grill HJ. Dynamics of gastric emptying during and after stomach fill. Am J Physiol Regul Integr Comp Physiol 1992;263:R813–20.
  • Kaplan JM, Siemers WH, Grill HJ. Effect of oral versus gastric delivery on gastric emptying of corn oil emulsions. Am J Physiol Regul Integr Comp Physiol 1997;273:R1263–70.
  • Bernstein IL, Goehler LE. Vagotomy produces learned food aversions in the rat. Behav Neurosci 1983;97:585–94.
  • Mei N. Intestinal chemosensitivity. Physiol Rev 1985;65:211–37.
  • Mélone J. Vagal receptors sensitive to lipids in the small intestine of the cat. J Auton Nerv Syst 1986;17:231–41.
  • Powley TL, Phillips RJ. Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav 2004;82:69–74.
  • Berthoud HR. The vagus nerve, food intake and obesity. Regul Pept 2008;149:15–25.
  • Blackshaw LA, Page AJ, Partosoedarso ER. Acute effects of capsaicin on gastrointestinal vagal afferents. Neuroscience 2000;96:407–16.
  • Jagger A, Grahn J, Ritter RC. Reduced vagal sensory innervation of the small intestinal myenteric plexus following capsaicin treatment of adult rats. Neurosci Lett 1997;236:103–6.
  • Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: Sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 1989;283:248–68.
  • Van de Wall EHEM, Duffy P, Ritter RC. CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents. Am J Physiol Regul Integr Comp Physiol 2005;289:R695–703.
  • Zafra MA, Prados M, Molina F, Puerto A. Capsaicin-sensitive afferent vagal fibers are involved in concurrent taste aversion learning. Neurobiol Learn Mem 2006;86:349–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.