Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 21, 2018 - Issue 9
2,953
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Epigenetics, nutrition and mental health. Is there a relationship?

ORCID Icon, & ORCID Icon

References

  • Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 2012;13(2):97–109.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33(3S):245–54.
  • Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007;8(4):253–62.
  • Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117(1):175–84.
  • Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003;23(15):5293–300.
  • Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005;135(6):1382–6.
  • Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998;12(11):949–57.
  • Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic basis of mental illness. Neuroscientist 2016;22(5):447–63.
  • Ptak C, Petronis A. Epigenetic approaches to psychiatric disorders. Dialogues Clin Neurosci 2010;12(1):25–35.
  • Klengel T, Pape J, Binder EB, Mehta D. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 2014;80:115–32.
  • Bradshaw AD. Evolutionary significance of phenotypic plasticity in plants. Adv Genet 1965;13:115–55.
  • DeWitt TJ, Sih A, Wilson DS. Costs and limits of phenotypic plasticity. Trends Ecol Evol 1998;13(2):77–81.
  • Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007;447(7143):433–40.
  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 1997;389(6648):251–60.
  • Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999;98(3):285–94.
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009;10(5):295–304.
  • Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev Genet 2016;17(11):661–78.
  • Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009;326(5950):289–93.
  • Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science 2002;295(5558):1306–11.
  • Zakhari S. Alcohol metabolism and epigenetics changes. Alcohol Res 2013;35(1):6–16.
  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99(3):247–57.
  • Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 1991;64(6):1123–34.
  • Meehan R, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 1992;20(19):5085–92.
  • Nan X, Tate P, Li E, Bird A. DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 1996;16(1):414–21.
  • Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell 1986;44(4):535–43.
  • Bird AP. CpG-rich islands and the function of DNA methylation. Nature 1986;321(6067):209–13.
  • Bird AP, Wolffe AP. Methylation-induced repression – belts, braces, and chromatin. Cell 1999;99(5):451–4.
  • Jones PA. The DNA methylation paradox. Trends Genet 1999;15(1):34–7.
  • Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010;11(9):607–20.
  • Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta – Rev Cancer 2007;1775(1):138–62.
  • Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 2008;359(1):61–73.
  • Meaney MJ, Szyf M. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci 2005;7(2):103–23.
  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science 2013;341(6146):1237905.
  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008;105(44):17046–9.
  • Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen SE, Robinson GE, et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci 2012;109(13):4968–73.
  • Kamakura M. Royalactin induces queen differentiation in honeybees. Nature 2011;473(7348):478–83.
  • Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R, et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 2010;8(11):e1000506.
  • Schmitzova J, Klaudiny J, Albert Š, Schröder W, Schreckengost W, Hanes J, et al. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell Mol Life Sci CMLS 1998;54(9):1020–30.
  • Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 2008;319(5871):1827–30.
  • Colhoun E, Smith M. Neurohormonal properties of royal jelly 1960.
  • Page RE, Peng CY-S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol 2001;36(4):695–711.
  • Wheeler DE. Developmental and physiological determinants of caste in social hymenoptera: evolutionary implications. Am Nat 1986;128(1):13–34.
  • Mao W, Schuler MA, Berenbaum MR. A dietary phytochemical alters caste-associated gene expression in honey bees. Sci Adv 2015;1(7):e1500795.
  • Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. Metastable epialleles in mammals. Trends Genet 2002;18(7):348–51.
  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005;102(30):10604–9.
  • Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J, Cox AV, et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol 2004;2(12):e405.
  • Duhl DM, Vrieling H, Miller KA, Wolff GL, Barsh GS. Neomorphic agouti mutations in obese yellow mice. Nat Genet 1994;8(1):59–65.
  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 1999;23(3):314–8.
  • Dolinoy DC. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 2008;66(suppl. 1):S7–11.
  • Miltenberger RJ, Mynatt RL, Wilkinson JE, Woychik RP. The role of the agouti gene in the yellow obese syndrome. J Nutr 1997;127(9):1902S–7S.
  • Bray GA, York DA. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev 1979;59(3):719–809.
  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997;88(1):131–41.
  • Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 2012;23(8):853–9.
  • Asai T, Bundo M, Sugawara H, Sunaga F, Ueda J, Tanaka G, et al. Effect of mood stabilizers on DNA methylation in human neuroblastoma cells. Int J Neuropsychopharmcol 2013;16(10):2285–94.
  • Kato T, Iwamoto K. Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders. Neuropharmacology 2014;80:133–9.
  • Lötsch J, Schneider G, Reker D, Parnham MJ, Schneider P, Geisslinger G, et al. Common non-epigenetic drugs as epigenetic modulators. Trends Mol Med 2013;19(12):742–53.
  • Mehta D, Klengel T, Conneely KN, Smith AK, Altmann A, Pace TW, et al. Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci 2013;110(20):8302–7.
  • Rönn T, Volkov P, Davegårdh C, Dayeh T, Hall E, Olsson AH, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 2013;9(6):e1003572.
  • Van den Veyver IB. Genetic effects of methylation diets. Annu Rev Nutr 2002;22(1):255–82.
  • Benyshek D, Johnston C, Martin J. Glucose metabolism is altered in the adequately-nourished grand-offspring (F 3 generation) of rats malnourished during gestation and perinatal life. Diabetologia 2006;49(5):1117–9.
  • Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res A 2010;88(10):938–44.
  • Bispham J, Gopalakrishnan G, Dandrea J, Wilson V, Budge H, Keisler D, et al. Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology 2003;144(8):3575–85.
  • Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci 1997;94(7):3290–5.
  • Brown AS, Susser ES. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophrenia Bull 2008;34(6):1054–63.
  • Czeizel A, Rockenbauer M. Prevention of congenital abnormalities by vitamin A. Internationale Zeitschrift fur Vitamin-und Ernahrungsforschung Journal international de vitaminologie et de nutrition 1997;68(4):219–31.
  • Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci 2007;104(32):13056–61.
  • Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 2014;5:348.
  • Drake A, Walker B. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol 2004;180(1):1–16.
  • Gillman MW. Prenatal famine and developmental origins of type 2 diabetes. Lancet Diabetes Endocrinol 2015;3(10):751–2.
  • Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol 2012;41(1):79–105.
  • Khulan B, Cooper WN, Skinner BM, Bauer J, Owens S, Prentice AM, et al. Periconceptional maternal micronutrient supplementation is associated with widespread gender related changes in the epigenome: a study of a unique resource in the Gambia. Hum Mol Genet 2012;21(9):2086–101.
  • Lumey L, Stein AD, Kahn HS, van der Pal-de KM, Blauw G, Zybert PA, et al. Cohort profile: the Dutch hunger winter families study. Int J Epidemiol 2007;36(6):1196–204.
  • Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev 2006;82(8):485–91.
  • Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Schroeder-Tanka JM, et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart 2000;84(6):595–8.
  • Painter RC, de Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker DJ, et al. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr 2006;84(2):322–7.
  • Painter RC, De Rooij SR, Bossuyt PM, Osmond C, Barker DJ, Bleker OP, et al. A possible link between prenatal exposure to famine and breast cancer: a preliminary study. Am J Hum Biol 2006;18(6):853–6.
  • Schulz LC. The Dutch hunger winter and the developmental origins of health and disease. Proc Natl Acad Sci 2010;107(39):16757–8.
  • Ravelli G-P, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976;295(7):349–53.
  • Tobi EW, Lumey L, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing-and sex-specific. Hum Mol Genet 2009;18(21):4046–53.
  • Tobi EW, Slieker RC, Stein AD, Suchiman HED, Slagboom PE, van Zwet EW, et al. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol 2015;44(4):1211–23.
  • Banegas JR. Mass starvation in early life and adult hypertension in China. J Hypertens 2017;35(1):29–32.
  • Li J, Liu S, Li S, Feng R, Na L, Chu X, et al. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: a population-based cohort study of families in Suihua, China. Am J Clin Nutr 2016;105:221–7.
  • St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 2005;294(5):557–62.
  • Susser E, St Clair D. Prenatal famine and adult mental illness: interpreting concordant and discordant results from the Dutch and Chinese Famines. Soc Sci Med (1982) 2013;97:325–30.
  • Wang N, Chen Y, Ning Z, Li Q, Han B, Zhu C, et al. Exposure to famine in early life and nonalcoholic fatty liver disease in adulthood. J Clin Endocr Metab 2016;101(5):2218–25.
  • Yu C, Wang J, Li Y, Han X, Hu H, Wang F, et al. Exposure to the Chinese famine in early life and hypertension prevalence risk in adults. J Hypertens 2017;35(1):63–8.
  • Wang B, Gao W, Li J, Yu C, Cao W, Lv J, et al. Methylation loci associated with body mass index, waist circumference, and waist-to-hip ratio in Chinese adults: an epigenome-wide analysis. Lancet 2016;388:S21.
  • Wang P-X, Wang J-J, Lei Y-X, Xiao L, Luo Z-C. Impact of fetal and infant exposure to the Chinese great famine on the risk of hypertension in adulthood. PLoS One 2012;7(11):e49720.
  • Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M, et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 2010;6(12):e1001252.
  • Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 2007;9(1):64–71.
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001;293(5532):1089–93.
  • Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 2011;479(7373):365–71.
  • Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 2012;13(3):153–62.
  • Morgan DK, Whitelaw E. The case for transgenerational epigenetic inheritance in humans. Mamm Genome 2008;19(6):394–7.
  • Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005;308(5727):1466–9.
  • Jimenez-Chillaron JC, Isganaitis E, Charalambous M, Gesta S, Pentinat-Pelegrin T, Faucette RR, et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 2009;58(2):460–8.
  • Francis D, Diorio J, Liu D, Meaney MJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 1999;286(5442):1155–8.
  • Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol-Regul Integr Comp Physiol 2004;288(1):R34–R8.
  • Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci 2007;104(49):19351–6.
  • Painter R, Osmond C, Gluckman P, Hanson M, Phillips D, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG: Inter J Obstet Gynaecol 2008;115(10):1243–9.
  • Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 2006;14(2):159–66.
  • Bygren LO, Kaati G, Edvinsson S. Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor 2001;49(1):53–9.
  • Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 2002;10(11):682–8.
  • Lesch KP. Maturing insights into the genetic architecture of neurodevelopmental disorders – from common and rare variant interplay to precision psychiatry. J Child Psychol Psyc 2016;57(6):659–61.
  • Sullivan PF, Daly MJ, O’donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012;13(8):537–51.
  • Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci 2014;17(6):782–90.
  • Chelly J, Khelfaoui M, Francis F, Chérif B, Bienvenu T. Genetics and pathophysiology of mental retardation. Eur J Hum Genet 2006;14(6):701–13.
  • Plomin R, DeFries J, McClearn G, McGuffin P. Behavioral Genetics. New York, NY: Worth; 2008.
  • Dalton VS, Kolshus E, McLoughlin DM. Epigenetics and depression: return of the repressed. J Affect Disord 2014;155:1–12.
  • van den Hove DL, Kenis G, Rutten BP. Epigenetic dysregulation in Alzheimer’s disease: cause or consequence? Epigenomics 2014;6(1):9–11.
  • Kremen WS, Panizzon MS, Cannon TD. Genetics and neuropsychology: a merger whose time has come. Neuropsychology 2016;30(1):1–5.
  • Schroeder FA, Lin CL, Crusio WE, Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 2007;62(1):55–64.
  • Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001;20(24):6969–78.
  • Milutinovic S, D’alessio AC, Detich N, Szyf M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 2006;28(3):560–71.
  • Dong E, Chen Y, Gavin DP, Grayson DR, Guidotti A. Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics 2010;5(8):730–5.
  • Covington HE, Maze I, LaPlant QC, Vialou VF, Ohnishi YN, Berton O, et al. Antidepressant actions of histone deacetylase inhibitors. J Neurosci 2009;29(37):11451–60.
  • Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 2008;8(1):57–64.
  • Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 2003;23(28):9418–27.
  • Kim YS, Tsao D, Siddiqui B, Whitehead JS, Arnstein P, Bennett J, et al. Effects of sodium butyrate and dimethylsulfoxide on biochemical properties of human colon cancer cells. Cancer 1980;45(S5):1185–92.
  • Schroeder M, Hillemacher T, Bleich S, Frieling H. The epigenetic code in depression: implications for treatment. Clin Pharmacol Ther 2012;91(2):310–4.
  • Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 2012;13(6):R43.
  • Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, et al. Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophrenia Bull 2015;42(2):406–14.
  • Pidsley R, Mill J. Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol Psychiatry 2011;69(2):146–56.
  • Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007;8(5):355–67.
  • Liu L, van Groen T, Kadish I, Tollefsbol TO. DNA methylation impacts on learning and memory in aging. Neurobiol Aging 2009;30(4):549–60.
  • Su SC, Tsai L-H. DNA methylation in cognition comes of age. Nat Neurosci 2012;15(8):1061–2.
  • Jones MJ, Farré P, McEwen LM, MacIsaac JL, Watt K, Neumann SM, et al. Distinct DNA methylation patterns of cognitive impairment and trisomy 21 in Down syndrome. BMC Med Genom 2013;6(1):1008.
  • Peter CJ, Fischer LK, Kundakovic M, Garg P, Jakovcevski M, Dincer A, et al. DNA methylation signatures of early childhood malnutrition associated with impairments in attention and cognition. Biol Psychiatry 2016;80(10):765–74.
  • Caballero IM, Hendrich B. MeCP2 in neurons: closing in on the causes of Rett syndrome. Hum Mol Genet 2005;14(suppl 1):R19–R26.
  • Bienvenu T, Chelly J. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet 2006;7(6):415–26.
  • Shahbazian MD, Zoghbi HY. Molecular genetics of Rett syndrome and clinical spectrum of MECP2 mutations. Curr Opin Neurol 2001;14(2):171–6.
  • Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue-and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002;11(2):115–24.
  • Couvert P, Bienvenu T, Aquaviva C, Poirier K, Moraine C, Gendrot C, et al. MECP2 is highly mutated in X-linked mental retardation. Hum Mol Genet 2001;10(9):941–6.
  • Lam C-W, Yeung W-L, Ko C-H, Poon PM, Tong S-F, Chan K-Y, et al. Spectrum of mutations in the MECP2 gene in patients with infantile autism and Rett syndrome. J Med Genet 2000;37(12):41e.
  • Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, et al. Depression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003;302(5646):885–9.
  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003;302(5646):890–3.
  • Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 2012;64(2):238–58.
  • Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 1999;286(5443):1358–62.
  • Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006;59(12):1116–27.
  • Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007;10(9):1089–93.
  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008;455(7215):894–902.
  • D’addario C, Dell’Osso B, Palazzo MC, Benatti B, Lietti L, Cattaneo E, et al. Selective DNA methylation of BDNF promoter in bipolar disorder: differences among patients with BDI and BDII. Neuropsychopharmacology 2012;37(7):1647–55.
  • Roth TL, Lubin FD, Funk AJ, Sweatt JD. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 2009;65(9):760–9.
  • Shirayama Y, Chen AC-H, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002;22(8):3251–61.
  • Januar V, Ancelin M, Ritchie K, Saffery R, Ryan J. BDNF promoter methylation and genetic variation in late-life depression. Transl Psychiatry 2015;5(8):e619.
  • Bocchio-Chiavetto L, Bagnardi V, Zanardini R, Molteni R, Gabriela Nielsen M, Placentino A, et al. Serum and plasma BDNF levels in major depression: a replication study and meta-analyses. World J Biol Psychiatry 2010;11(6):763–73.
  • Kurita M, Nishino S, Kato M, Numata Y, Sato T. Plasma brain-derived neurotrophic factor levels predict the clinical outcome of depression treatment in a naturalistic study. PLoS One 2012;7(6):e39212.
  • Lee B-H, Kim H, Park S-H, Kim Y-K. Decreased plasma BDNF level in depressive patients. J Affect Disord 2007;101(1):239–44.
  • Tripp A, Oh H, Guilloux J-P, Martinowich K, Lewis DA, Sibille E. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder. Am J Psychiatry 2012;169(11):1194–202.
  • Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M, et al. Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 1993;10(3):475–89.
  • Pattabiraman PP, Tropea D, Chiaruttini C, Tongiorgi E, Cattaneo A, Domenici L. Neuronal activity regulates the developmental expression and subcellular localization of cortical BDNF mRNA isoforms in vivo. Mol Cell Neurosci 2005;28(3):556–70.
  • Chiaruttini C, Sonego M, Baj G, Simonato M, Tongiorgi E. BDNF mRNA splice variants display activity-dependent targeting to distinct hippocampal laminae. Mol Cell Neurosci 2008;37(1):11–9.
  • Rousseaud A, Delépine C, Nectoux J, Billuart P, Bienvenu T. Differential expression and regulation of brain-derived neurotrophic factor (BDNF) mRNA isoforms in brain cells from Mecp2308/y mouse model. J Mol Neurosci 2015;56(4):758–67.
  • Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 2013;13(8):572–83.
  • Bestor T, Laudano A, Mattaliano R, Ingram V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells: the carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 1988;203(4):971–83.
  • Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet 2000;9(16):2395–402.
  • Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998;19(3):219–20.
  • Lu SC, Alvarez L, Huang Z-Z, Chen L, An W, Corrales FJ, et al. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci 2001;98(10):5560–5.
  • Hibbard BM. The role of folic acid in pregnancy with particular reference to anaemia, abruption and abortion. Obstet Gynecol Surv 1965;20(1):35–9.
  • van der Put NM, Gabreëls F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998;62(5):1044–51.
  • Jacques PF, Selhub J, Bostom AG, Wilson PW, Rosenberg IH. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999;340(19):1449–54.
  • Wallingford JB, Niswander LA, Shaw GM, Finnell RH. The continuing challenge of understanding, preventing, and treating neural tube defects. Science 2013;339(6123):1222002.
  • Coelho CN, Klein NW. Methionine and neural tube closure in cultured rat embryos: morphological and biochemical analyses. Teratology 1990;42(4):437–51.
  • Imbard A, Benoist J-F, Blom HJ. Neural tube defects, folic acid and methylation. Int J Env Res Pub Health 2013;10(9):4352–89.
  • Meethal SV, Hogan KJ, Mayanil CS, Iskandar BJ. Folate and epigenetic mechanisms in neural tube development and defects. Child’s Nerv Syst 2013;29(9):1427–33.
  • Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med 2004;229(10):988–95.
  • Friso S, Choi S-W, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci 2002;99(8):5606–11.
  • Castro R, Rivera I, Ravasco P, Camilo M, Jakobs C, Blom H, et al. 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C→ T and 1298A→ C mutations are associated with DNA hypomethylation. J Med Genet 2004;41(6):454–8.
  • Sohn KJ, Jang H, Campan M, Weisenberger DJ, Dickhout J, Wang YC, et al. The methylenetetrahydrofolate reductase C677T mutation induces cell-specific changes in genomic DNA methylation and uracil misincorporation: A possible molecular basis for the site-specific cancer risk modification. Int J Cancer 2009;124(9):1999–2005.
  • Wang L, Shangguan S, Chang S, Yu X, Wang Z, Lu X, et al. Determining the association between methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and genomic DNA methylation level: A meta-analysis. Birth Defects Res A 2016;106(8):667–74.
  • Bjelland I, Tell GS, Vollset SE, Refsum H, Ueland PM. Folate, vitamin B12, homocysteine, and the MTHFR 677C→ T polymorphism in anxiety and depression: the Hordaland homocysteine Study. Arch Gen Psychiatry 2003;60(6):618–26.
  • Gilbody S, Lewis S, Lightfoot T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol 2006;165(1):1–13.
  • Lewis S, Lawlor D, Smith GD, Araya R, Timpson N, Day I, et al. The thermolabile variant of MTHFR is associated with depression in the British women’s heart and health study and a meta-analysis. Mol Psychiatry 2006;11(4):352–60.
  • Lopez-Leon S, Janssens A, Ladd AG-Z, Del-Favero J, Claes S, Oostra B, et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 2008;13(8):772–85.
  • Almeida OP, McCaul K, Hankey GJ, Norman P, Jamrozik K, Flicker L. Homocysteine and depression in later life. Arch Gen Psychiatry 2008;65(11):1286–94.
  • Moustafa AA, Hewedi DH, Eissa AM, Frydecka D, Misiak B. Homocysteine levels in schizophrenia and affective disorders – focus on cognition. Front Behav Neurosci 2014;8:343.
  • Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur J Med Genet 2015;58(1):1–10.
  • Bousman CA, Potiriadis M, Everall IP, Gunn JM. Methylenetetrahydrofolate reductase (MTHFR) genetic variation and major depressive disorder prognosis: a five-year prospective cohort study of primary care attendees. Am J Med Genet B: Neuropsychiatr Genet 2014;165(1):68–76.
  • Devlin AM, Brain U, Austin J, Oberlander TF. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS ONE 2010;5(8):e12201.
  • Lambrot R, Xu C, Saint-Phar S, Chountalos G, Cohen T, Paquet M, et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun 2013;4:4059.
  • Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr 2007;137(1):223S–8S.
  • Stoner GD, Morse MA. Isothiocyanates and plant polyphenols as inhibitors of lung and esophageal cancer. Cancer Lett 1997;114(1):113–9.
  • Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem 2010;17(20):2141–51.
  • Brown KK, Hampton MB. Biological targets of isothiocyanates. Biochim Biophys Acta (BBA)-Gen Subjects 2011;1810(9):888–94.
  • Shankar S, Kumar D, Srivastava RK. Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther 2013;138(1):1–17.
  • Choi S-W, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr Int Rev J 2010;1(1):8–16.
  • Remely M, Lovrecic L, Garza A, Migliore L, Peterlin B, Milagro F, et al. Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 2015;172(11):2756–68.
  • Zhang N. Epigenetic modulation of DNA methylation by nutrition and its mechanisms in animals. Anim Nutr 2015;1(3):144–51.
  • Sarris J, Logan AC, Akbaraly TN, Amminger GP, Balanzá-Martínez V, Freeman MP, et al. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry 2015;2(3):271–4.
  • Liu J, Raine A, Venables PH, Mednick SA. Malnutrition at age 3 years and externalizing behavior problems at ages 8, 11, and 17 years. Am J Psychiatry 2004;161(11):2005–13.
  • Neugebauer R. Fetal origins of antisocial personality disorder and schizophrenia: evidence from the Dutch hunger winter 1944–45. Crime and schizophrenia: causes and cures. New York: Nova Science Publishers; 2006 p.179–202.
  • Brown AS, Susser ES, Lin SP, Neugebauer R, Gorman JM. Increased risk of affective disorders in males after second trimester prenatal exposure to the Dutch hunger winter of 1944–45. Br J Psychiatry 1995;166(5):601–6.
  • Rucklidge JJ. Successful treatment of OCD with a micronutrient formula following partial response to cognitive behavioral therapy (CBT): a case study. J Anxiety Disord 2009;23(6):836–40.
  • Rucklidge J, Johnstone J, Harrison R, Boggis A. Micronutrients reduce stress and anxiety in adults with attention-deficit/hyperactivity disorder following a 7.1 earthquake. Psychiatry Res 2011;189(2):281–7.
  • Rucklidge J, Taylor M, Whitehead K. Effect of micronutrients on behavior and mood in adults with ADHD: evidence from an 8-week open label trial with natural extension. J Atten Disord 2011;15(1):79–91.
  • Rucklidge JJ, Andridge R, Gorman B, Blampied N, Gordon H, Boggis A. Shaken but unstirred? Effects of micronutrients on stress and trauma after an earthquake: RCT evidence comparing formulas and doses. Hum Psychopharm Clin Exp 2012;27(5):440–54.
  • Rucklidge JJ, Kaplan BJ. Broad-spectrum micronutrient formulas for the treatment of psychiatric symptoms: a systematic review. Expert Rev Neurotherapeut 2013;13(1):49–73.
  • Rucklidge JJ, Frampton CM, Gorman B, Boggis A. Vitamin-mineral treatment of attention-deficit hyperactivity disorder in adults: double-blind randomised placebo-controlled trial. Br J Psychiatry 2014;204(4):306–15.
  • Kaplan BJ, Fisher JE, Crawford SG, Field CJ, Kolb B. Improved mood and behavior during treatment with a mineral-vitamin supplement: an open-label case series of children. J Child Adol Psychopharmacol 2004;14(1):115–22.
  • Simpson JSA, Crawford SG, Goldstein ET, Field C, Burgess E, Kaplan BJ. Systematic review of safety and tolerability of a complex micronutrient formula used in mental health. BMC Psychiatry 2011;11(1):365.
  • Leung BM, Kaplan BJ, Field CJ, Tough S, Eliasziw M, Gomez MF, et al. Prenatal micronutrient supplementation and postpartum depressive symptoms in a pregnancy cohort. BMC Pregnancy Childbirth 2013;13(1):e15.
  • Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. Developmental origins of non-communicable disease: implications for research and public health. Environ Health 2012;11(1):938.
  • Waxman A. Why a global strategy on diet, physical activity and health? Nutrition and fitness: mental health, aging, and the implementation of a healthy diet and physical activity lifestyle. Vol. 95. Basel: Karger Publishers; 2005. p. 162–6.
  • Botez M, Young S, Bachevalier J, Gauthier S. Folate deficiency and decreased brain 5-hydroxytryptamine synthesis in man and rat. Nature 1979;278(5700):182–3.
  • Bottiglieri T, Laundy M, Crellin R, Toone BK, Carney MW, Reynolds EH. Homocysteine, folate, methylation, and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry 2000;69(2):228–32.
  • Stuffrein-Roberts S, Joyce PR, Kennedy MA. Role of epigenetics in mental disorders. Aust NZ J Psychiatry 2008;42(2):97–107.
  • Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease. Nat Med 2012;18(8):1194–204.
  • Schmidt RJ, Tancredi DJ, Ozonoff S, Hansen RL, Hartiala J, Allayee H, et al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood autism risks from genetics and environment) case-control study. Am J Clin Nutr 2012;96(1):80–9.
  • Ciernia AV, LaSalle J. The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat Rev Neurosci 2016;17(7):411–23.
  • Grayson DR, Guidotti A. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics 2016;8(1):85–104.
  • Schneider E, Dittrich M, Böck J, Nanda I, Müller T, Seidmann L, et al. CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development. Gene 2016;592(1):110–8.
  • Molina-Serrano D, Schiza V, Kirmizis A. Cross-talk among epigenetic modifications: lessons from histone arginine methylation. Biochem Soc Trans 2013;41(3):751–9.
  • Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI, et al. Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome. Hum Mol Genet 2012;21(13):3073–82.
  • La Merrill M, Torres-Sánchez L, Ruiz-Ramos R, López-Carrillo L, Cebrián ME, Chen J. The association between first trimester micronutrient intake, MTHFR genotypes, and global DNA methylation in pregnant women. J Maternal-Fetal Neo Med 2012;25(2):133–7.
  • Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet 2012;13(10):705–19.
  • McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 2005;85(2):571–633.
  • Olsen J. David Barker (1938–2013)–a giant in reproductive epidemiology. Acta Obstet Gynecol Scand 2014;93(11):1077–80.
  • Ganu RS, Harris RA, Collins K, Aagaard KM. Early origins of adult disease: approaches for investigating the programmable epigenome in humans, nonhuman primates, and rodents. ILAR J 2012;53(3–4):306–21.
  • Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007;128(4):635–8.
  • Bird A. Perceptions of epigenetics. Nature 2007;447(7143):396–8.
  • Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 2011;88(4):450–7.
  • Breton CV, Byun H-M, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Resp Crit Care Med 2009;180(5):462–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.