Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 22, 2019 - Issue 1
969
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Evaluation of dietary and lifestyle changes as modifiers of S100β levels in Alzheimer’s disease

, , , , , & show all

References

  • Liu L, Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev 2014;15:6–15.
  • Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med 2010;77(1):32–42.
  • Iqbal K, Liu F, Gong CX. Alzheimer disease therapeutics: focus on the disease and not just plaques and tangles. Biochem Pharmacol 2014;88(4):631–9.
  • Harrington CR. The molecular pathology of Alzheimer’s disease. Neuroimag Clin N Am 2012;22(1):11–22, vii.
  • Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 2016;18(5):421–30.
  • Reitz C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012;2012:369808.
  • Willette AA, Bendlin BB, Starks EJ, Birdsill AC, Johnson SC, Christian BT, et al. Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer disease. JAMA Neurol 2015;72(9):1013–20.
  • Mander BA, Winer JR, Jagust WJ, Walker MP. Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci 2016;39(8):552–66.
  • World Health Organization. Dementia Fact Sheet: World Health Organization; 2016 [updated April 2016]. Available from: http://www.who.int/mediacentre/factsheets/fs362/en/
  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3(3):186–91.
  • Wimo A, Guerchet M, Ali GC, Wu YT, Prina AM, Winblad B, et al. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 2017;13(1):1–7.
  • Rountree SD, Chan W, Pavlik VN, Darby EJ, Siddiqui S, Doody RS. Persistent treatment with cholinesterase inhibitors and/or memantine slows clinical progression of Alzheimer disease. Alz Res Ther. 2009;1(2):7.
  • Meguro M, Kasai M, Akanuma K, Ishii H, Yamaguchi S, Meguro K. Comprehensive approach of donepezil and psychosocial interventions on cognitive function and quality of life for Alzheimer’s disease: the Osaki-Tajiri Project. Age Ageing 2008;37(4):469–73.
  • Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 2015;385(9984):2255–63.
  • Bredesen DE. Reversal of cognitive decline: a novel therapeutic program. Aging 2014;6(9):707–17.
  • Daviglus ML, Bell CC, Berrettini W, Bowen PE, Connolly ES, Jr., Cox NJ, et al. National institutes of health state-of-the-science conference statement: preventing Alzheimer disease and cognitive decline. Ann Intern Med. 2010;153(3):176–81.
  • Opie RS, Ralston RA, Walker KZ. Adherence to a Mediterranean-style diet can slow the rate of cognitive decline and decrease the risk of dementia: a systematic review. Nutr Diet 2013;70(3):206–17.
  • Barberger-Gateau P, Raffaitin C, Letenneur L, Berr C, Tzourio C, Dartigues JF, et al. Dietary patterns and risk of dementia: the three-city cohort study. Neurology 2007;69(20):1921–30.
  • Feart C, Samieri C, Rondeau V, Amieva H, Portet F, Dartigues JF, et al. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA 2009;302(6):638–48.
  • van de Rest O, Berendsen AA, Haveman-Nies A, de Groot LC. Dietary patterns, cognitive decline, and dementia: a systematic review. Adv Nutr 2015;6(2):154–68.
  • Morris MC, Tangney CC, Wang Y, Sacks FM, Barnes LL, Bennett DA, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement 2015;11(9):1015–22.
  • Tsagalioti E, Trifonos C, Morari A, Vadikolias K, Giaginis C. Clinical value of nutritional status in neurodegenerative diseases: what is its impact and how it affects disease progression and management? Nutr Neurosci 2016:1–14. doi:10.1080/1028415X.2016.1261529.
  • Jacka FN, Cherbuin N, Anstey KJ, Sachdev P, Butterworth P. Western diet is associated with a smaller hippocampus: a longitudinal investigation. BMC Med 2015;13(1):215.
  • Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol. 2013;74(4):580–91.
  • Ogce F, Ceber E, Ekti R, Oran NT. Comparison of Mediterranean, Western and Japanese diets and some recommendations. Asian Pac J Cancer Prev 2008;9(2):351–6.
  • Grant WB. Trends in diet and Alzheimer’s disease during the nutrition transition in Japan and developing countries. J Alzheimers Dis 2014;38(3):611–20.
  • Bredesen DE, Amos EC, Canick J, Ackerley M, Raji C, Fiala M, et al. Reversal of cognitive decline in Alzheimer’s disease. Aging 2016;8(6):1250–8.
  • Berti V, Murray J, Davies M, Spector N, Tsui WH, Li Y, et al. Nutrient patterns and brain biomarkers of Alzheimer’s disease in cognitively normal individuals. J Nutr Health Aging 2015;19(4):413–23.
  • Kanoski SE, Davidson TL. Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav 2011;103(1):59–68.
  • Krell-Roesch J, Pink A, Roberts RO, Stokin GB, Mielke MM, Spangehl KA, et al. Timing of physical activity, apolipoprotein E epsilon4 genotype, and risk of incident mild cognitive impairment. J Am Geriatr Soc. 2016;64(12):2479–86.
  • Chen ST, Siddarth P, Ercoli LM, Merrill DA, Torres-Gil F, Small GW. Modifiable risk factors for Alzheimer disease and subjective memory impairment across age groups. PLoS One 2014;9(6):e98630.
  • Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 2010;20(Suppl 2):S265–79.
  • Sattler C, Toro P, Schonknecht P, Schroder J. Cognitive activity, education and socioeconomic status as preventive factors for mild cognitive impairment and Alzheimer’s disease. Psychiatry Res 2012;196(1):90–5.
  • Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 2016;8(340):340ra72.
  • Freiherr J, Hallschmid M, Frey WH, II, Brunner YF, Chapman CD, Holscher C, et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 2013;27(7):505–14.
  • Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015;16(6):358–72.
  • van de Haar HJ, Burgmans S, Jansen JF, van Osch MJ, van Buchem MA, Muller M, et al. Blood-Brain barrier leakage in patients with early Alzheimer disease. Radiology 2016;281(2):527–35.
  • James BD, Wilson RS, Barnes LL, Bennett DA. Late-life social activity and cognitive decline in old age. J Int Neuropsychol Soc 2011;17(6):998–1005.
  • Bubu OM, Brannick M, Mortimer J, Umasabor-Bubu O, Sebastiao YV, Wen Y, et al. Sleep, cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Sleep 2017;40(1):zsw032.
  • Kitamura Y, Usami R, Ichihara S, Kida H, Satoh M, Tomimoto H, et al. Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer’s disease. Neurol Res 2017;39(3):231–8.
  • Chong ZZ, Changyaleket B, Xu H, Dull RO, Schwartz DE. Identifying S100B as a biomarker and a therapeutic target For brain injury and multiple diseases. Curr Med Chem 2016;23(15):1571–96.
  • Kapural M, Krizanac-Bengez L, Barnett G, Perl J, Masaryk T, Apollo D, et al. Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res 2002;940(1–2):102–4.
  • Streitburger DP, Arelin K, Kratzsch J, Thiery J, Steiner J, Villringer A, et al. Validating serum S100B and neuron-specific enolase as biomarkers for the human brain – a combined serum, gene expression and MRI study. PLoS One 2012;7(8):e43284.
  • Michetti F, Dell’Anna E, Tiberio G, Cocchia D. Immunochemical and immunocytochemical study of S-100 protein in rat adipocytes. Brain Res 1983;262(2):352–6.
  • Tubaro C, Arcuri C, Giambanco I, Donato R. S100b protein in myoblasts modulates myogenic differentiation via NF-kappaB-dependent inhibition of MyoD expression. J Cell Physiol 2010;223(1):270–82.
  • Bouvier D, Duret T, Rouzaire P, Jabaudon M, Rouzaire M, Nourrisson C, et al. Preanalytical, analytical, gestational and pediatric aspects of the S100B immuno-assays. Clin Chem Lab Med 2016;54(5):833–42.
  • Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 2000;275(51):40096–105.
  • Selinfreund RH, Barger SW, Pledger WJ, Van Eldik LJ. Neurotrophic protein S100 beta stimulates glial cell proliferation. Proc Natl Acad Sci U S A 1991;88(9):3554–8.
  • Heidari K, Asadollahi S, Jamshidian M, Abrishamchi SN, Nouroozi M. Prediction of neuropsychological outcome after mild traumatic brain injury using clinical parameters, serum S100B protein and findings on computed tomography. Brain Inj 2015;29(1):33–40.
  • Kellermann I, Kleindienst A, Hore N, Buchfelder M, Brandner S. Early CSF and serum S100B concentrations for outcome prediction in traumatic brain injury and subarachnoid hemorrhage. Clin Neurol Neurosurg 2016;145:79–83.
  • Pfortmueller CA, Drexel C, Krahenmann-Muller S, Leichtle AB, Fiedler GM, Lindner G, et al. S-100 B concentrations are a predictor of decreased survival in patients with Major trauma, independently of head injury. PLoS One. 2016;11(3):e0152822.
  • Mercier E, Boutin A, Lauzier F, Fergusson DA, Simard JF, Zarychanski R, et al. Predictive value of S-100 protein for prognosis in patients with moderate and severe traumatic brain injury: systematic review and meta-analysis. BMJ 2013;346:f1757.
  • Calcagnile O, Anell A, Unden J. The addition of S100B to guidelines for management of mild head injury is potentially cost saving. BMC Neurol 2016;16(1):200.
  • Nash DL, Bellolio MF, Stead LG. S100 as a marker of acute brain ischemia: a systematic review. Neurocrit Care 2008;8(2):301–7.
  • Choi S, Park K, Ryu S, Kang T, Kim H, Cho S, et al. Use of S-100B, NSE, CRP and ESR to predict neurological outcomes in patients with return of spontaneous circulation and treated with hypothermia. Emerg Med J 2016;33(10):690–5.
  • McDonagh DL, Mathew JP, White WD, Phillips-Bute B, Laskowitz DT, Podgoreanu MV, et al. Cognitive function after major noncardiac surgery, apolipoprotein E4 genotype, and biomarkers of brain injury. Anesthesiology. 2010;112(4):852–9.
  • Royston, MC, McKenzie, JE, Gentleman, SM, Sheng, JG, Mann, DMA, Griffin, WST, et al. Overexpression of S100beta in Down’s syndrome: correlation with patient age and with beta-amyloid deposition. Neuropathol Appl Neurobiol 1999;25(5):387–93.
  • Sathe K, Maetzler W, Lang JD, Mounsey RB, Fleckenstein C, Martin HL, et al. S100b is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. Brain 2012;135(Pt 11):3336–47.
  • Bartosik-Psujek H, Psujek M, Jaworski J, Stelmasiak Z. Total tau and S100b proteins in different types of multiple sclerosis and during immunosuppressive treatment with mitoxantrone. Acta Neurol Scand 2011;123(4):252–6.
  • Gebhardt C, Lichtenberger R, Utikal J. Biomarker value and pitfalls of serum S100B in the follow-up of high-risk melanoma patients. J Dtsch Dermatol Ges 2016;14(2):158–64.
  • Benedict C, Cedernaes J, Giedraitis V, Nilsson EK, Hogenkamp PS, Vagesjo E, et al. Acute sleep deprivation increases serum levels of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in healthy young men. Sleep 2014;37(1):195–8.
  • van Passel R, Schlooz WA, Lamers KJ, Lemmens WA, Rotteveel JJ. S100b protein, glia and Gilles de la Tourette syndrome. Eur J Paediatr Neurol 2001;5(1):15–9.
  • Gulen B, Serinken M, Eken C, Karcioglu O, Kucukdagli OT, Kilic E, et al. Serum S100B as a surrogate biomarker in the diagnoses of burnout and depression in emergency medicine residents. Acad Emerg Med 2016;23(7):786–9.
  • Beccafico S, Riuzzi F, Puglielli C, Mancinelli R, Fulle S, Sorci G, et al. Human muscle satellite cells show age-related differential expression of S100B protein and RAGE. AGE 2011;33(4):523–41.
  • Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100b’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta 2009;1793(6):1008–22.
  • Wartchow KM, Tramontina AC, de Souza DF, Biasibetti R, Bobermin LD, Goncalves CA. Insulin stimulates S100B secretion and these proteins antagonistically modulate brain glucose metabolism. Neurochem Res 2016;41(6):1420–9.
  • Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, et al. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci 2007;8:2.
  • Leclerc E, Sturchler E, Vetter SW. The S100B/RAGE axis in Alzheimer’s disease. Cardiovasc Psychiatry Neurol 2010;2010:539581.
  • Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, et al. RAGE mediates a novel proinflammatory axis. Cell 1999;97(7):889–901.
  • Bianchi R, Giambanco I, Donato R. S100b/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 2010;31(4):665–77.
  • Hu J, Ferreira A, Van Eldik LJ. S100beta induces neuronal cell death through nitric oxide release from astrocytes. J Neurochem 1997;69(6):2294–301.
  • Petzold A, Jenkins R, Watt HC, Green AJ, Thompson EJ, Keir G, et al. Cerebrospinal fluid S100B correlates with brain atrophy in Alzheimer’s disease. Neurosci Lett 2003;336(3):167–70.
  • Green AJE, Harvey RJ, Thompson EJ, Rossor MN. Increased S100β in the cerebrospinal fluid of patients with frontotemporal dementia. Neurosci Lett 1997;235(1–2):5–8.
  • Peskind ER, Griffin WS, Akama KT, Raskind MA, Van Eldik LJ. Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int 2001;39(5–6):409–13.
  • Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, Dall’Igna O, et al. Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflamm 2010;7:6.
  • Bolayirli M, Konukoglu D, Firtina S, Erkol G. Comparing oxidative stress markers and S100B, Aβ-40 proteins as independent neurological markers in distinguishing the relation of Alzheimer’s disease and diabetes mellitus. J Neurol Neurosci. 2016;7(5):146.
  • Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86(19):7611–5.
  • Sen J, Belli A. S100b in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;85(7):1373–80.
  • Sabuncu MR, Desikan RS, Sepulcre J, Yeo BT, Liu H, Schmansky NJ, et al. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch Neurol 2011;68(8):1040–8.
  • Clementi ME, Sampaolese B, Giardina B. S100b induces expression of myoglobin in APβ treated neuronal cells In vitro: a possible neuroprotective mechanism. Curr Aging Sci 2016;9(4):279–83.
  • Lam V, Albrecht MA, Takechi R, Giles C, James AP, Foster JK, et al. The serum concentration of the calcium binding protein S100B is positively associated with cognitive performance in older adults. Front Ag Neurosci 2013;5:61.
  • Mrak RE, Sheng JG, Griffin WS. Correlation of astrocytic S100β expression with dystrophic neurites in amyloid plaques of Alzheimer's disease. J Neuropathol Exp Neurol 1996;55(3):273–9.
  • Mori T, Koyama N, Arendash GW, Horikoshi-Sakuraba Y, Tan J, Town T. Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia 2010;58(3):300–14.
  • Mrak RE, Griffinbc WS. The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease. Neurobiol Aging 2001;22(6):915–22.
  • Li Y, Wang J, Sheng JG, Liu L, Barger SW, Jones RA, et al. S100β increases levels of β-amyloid precursor protein and Its encoding mRNA in Rat neuronal cultures. J Neurochem. 1998;71(4):1421–8.
  • Anderson PJB, Watts HR, Jen S, Gentleman SM, Moncaster JA, Walsh DT, et al. Differential effects of interleukin-1β and S100B on amyloid precursor protein in rat retinal neurons. Clin Ophthalmol 2009;3:235–42.
  • Winocur G, Roder J, Lobaugh N. Learning and memory in S100-β transgenic mice: an analysis of impaired and preserved function. Neurobiol Learn Memory 2001;75(2):230–43.
  • Whitaker-Azmitia PM, Wingate M, Borella A, Gerlai R, Roder J, Azmitia EC. Transgenic mice overexpressing the neurotrophic factor S-100 beta show neuronal cytoskeletal and behavioral signs of altered aging processes: implications for Alzheimer’s disease and Down’s syndrome. Brain Res. 1997;776(1–2):51–60.
  • Gerlai R, Roder J. Abnormal exploratory behavior in transgenic mice carrying multiple copies of the human gene for S100 beta. J Psychiatry Neurosci 1995;20(2):105–12.
  • Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A 2002;99(6):4037–42.
  • Shapiro LA, Bialowas-McGoey LA, Whitaker-Azmitia PM. Effects of S100B on serotonergic plasticity and neuroinflammation in the hippocampus in Down Syndrome and Alzheimer’s disease: studies in an S100B overexpressing mouse model. Cardiovasc Psychiatry Neurol. 2010;153657:1–13.
  • Shapiro LA, Whitaker-Azmitia PM. Expression levels of cytoskeletal proteins indicate pathological aging of S100B transgenic mice: an immunohistochemical study of MAP-2, drebrin and GAP-43. Brain Res 2004;1019(1–2):39–46.
  • Bialowas-McGoey LA, Lesicka A, Whitaker-Azmitia PM. Vitamin E increases S100B-mediated microglial activation in an S100B-overexpressing mouse model of pathological aging. Glia 2008;56(16):1780–90.
  • Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008;57(2):178–201.
  • Takechi R, Galloway S, Pallebage-Gamarallage MM, Wellington CL, Johnsen RD, Dhaliwal SS, et al. Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B lipoproteins with amyloid-beta. Br J Nutr 2010;103(5):652–62.
  • Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clinica Chimica Acta 2004;342(1–2):1–12.
  • Michetti F, Massaro A, Russo G, Rigon G. The S-100 antigen in cerebrospinal fluid as a possible index of cell injury in the nervous system. J Neurol Sci 1980;44(2–3):259–63.
  • Kleindienst A, Schmidt C, Parsch H, Emtmann I, Xu Y, Buchfelder M. The passage of S100B from brain to blood Is Not specifically related to the blood-brain barrier integrity. Cardiovasc Psychiatry Neurol. 2010;2010:801295.
  • Pham N, Fazio V, Cucullo L, Teng Q, Biberthaler P, Bazarian JJ, et al. Extracranial sources of S100B do not affect serum levels. PLoS One. 2010;5(9):e12691.
  • Petzold A, Keir G, Lim D, Smith M, Thompson EJ. Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. Brain Res Bull 2003;61(3):281–5.
  • Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al. Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. J Clin Invest. 2000;106(12):1489–99.
  • Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015;85(2):296–302.
  • Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W, et al. Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron 2015;88(2):289–97.
  • Hanson AJ, Craft S, Banks WA. The APOE genotype: modification of therapeutic responses in Alzheimer’s disease. Current Pharm Des 2014;21(1):114–20.
  • Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab. 2016;36(1):216–27.
  • Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 2012;485(7399):512–6.
  • Marrzoq LF, Sharif FA, Abed AA. Relationship between ApoE gene polymorphism and coronary heart disease in Gaza Strip. J Cardiovasc Dis Res 2011;2(1):29–35.
  • Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis 2014;72(Pt A):3–12.
  • Sando SB, Melquist S, Cannon A, Hutton ML, Sletvold O, Saltvedt I, et al. APOE ε4 lowers age at onset and is a high risk factor for Alzheimer’s disease; A case control study from central norway. BMC Neurol 2008;8(1):9.
  • Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013;9(2):106–18.
  • Poirier J, Miron J, Picard C, Gormley P, Theroux L, Breitner J, et al. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging 2014;35(Suppl 2):S3–10.
  • Rasmussen KL, Tybjaerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Plasma levels of apolipoprotein E and risk of dementia in the general population. Ann Neurol 2015;77(2):301–11.
  • Teng E, Chow N, Hwang KS, Thompson PM, Gylys KH, Cole GM, et al. Low plasma ApoE levels are associated with smaller hippocampal size in the Alzheimer’s disease neuroimaging initiative cohort. Dement Geriatr Cogn Dis 2015;39(3–4):154–66.
  • Vitek MP, Li F, Colton CA. Apolipoprotein E and mimetics as targets and therapeutics for Alzheimer’s disease. In: Anantharamaiah GM, Goldberg D, (eds.) Apolipoprotein mimetics in the management of human disease. Cham: Springer International Publishing; 2015. p. 157–82.
  • Song Y, Stampfer MJ, Liu S. Meta-analysis: apolipoprotein E genotypes and risk for coronary heart disease. Ann Intern Med 2004;141(2):137–47.
  • Nebel A, Kleindorp R, Caliebe A, Nothnagel M, Blanche H, Junge O, et al. A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech Age Dev 2011;132(6–7):324–30.
  • Olivecrona Z, Koskinen LO. The release of S-100B and NSE in severe traumatic head injury is associated with APOE ε4. Acta Neurochir 2012;154(4):675–80; discussion 80.
  • Kay AD, Petzold A, Kerr M, Keir G, Thompson EJ, Nicoll JA. Cerebrospinal fluid apolipoprotein E concentration decreases after traumatic brain injury. J Neurotrauma 2003;20(3):243–50.
  • Kofke WA, Konitzer P, Meng QC, Guo J, Cheung A. The effect of apolipoprotein E genotype on neuron specific enolase and S-100beta levels after cardiac surgery. Anesth Analg 2004;99(5):1323–5; table of contents.
  • Barnard ND, Bunner AE, Agarwal U. Saturated and trans fats and dementia: a systematic review. Neurobiol Aging 2014;35(Suppl 2):S65–73.
  • Laitinen MH, Ngandu T, Rovio S, Helkala EL, Uusitalo U, Viitanen M, et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Dis 2006;22(1):99–107.
  • Wu K, Bowman R, Welch AA, Luben RN, Wareham N, Khaw K-T, et al. Apolipoprotein E polymorphisms, dietary fat and fibre, and serum lipids: the EPIC Norfolk study. Eur Heart J 2007;28(23):2930–6.
  • Pallebage-Gamarallage MM, Lam V, Takechi R, Galloway S, Mamo JC. A diet enriched in docosahexanoic Acid exacerbates brain parenchymal extravasation of apo B lipoproteins induced by chronic ingestion of saturated fats. Int J Vasc Med 2012;2012:647689.
  • de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 2015;351:h3978.
  • Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk. Ann Intern Med 2014;160(6):398–406.
  • Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2015(6):Cd011737.
  • Schwab U, Lauritzen L, Tholstrup T, Haldorssoni T, Riserus U, Uusitupa M, et al. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food Nutr Res 2014;58: 25145.
  • Hsu TM, Kanoski SE. Blood-brain barrier disruption: mechanistic links between western diet consumption and dementia. Front Aging Neurosci 2014;6:88.
  • Beilharz JE, Maniam J, Morris MJ. Diet-Induced cognitive deficits: the role of Fat and sugar, potential mechanisms and nutritional interventions. Nutrients 2015;7(8):6719–38.
  • Koper JW, Lopes-Cardozo M, Van Golde LM. Preferential utilization of ketone bodies for the synthesis of myelin cholesterol in vivo. Biochim Biophys Acta 1981;666(3):411–7.
  • Poduslo SE, Miller K. Ketone bodies as precursors for lipid synthesis in neurons, astrocytes, and oligodendroglia (myelin) in hyperthyroidism, hyperketonemia and hypoketonemia. Neurochem Int 1991;18(1):85–8.
  • Lima PA, de Brito Sampaio LP, Damasceno NR. Ketogenic diet in epileptic children: impact on lipoproteins and oxidative stress. Nutr Neurosci 2015;18(8):337–44.
  • Leite M, Frizzo JK, Nardin P, de Almeida LM, Tramontina F, Gottfried C, et al. β-Hydroxy-butyrate alters the extracellular content of S100B in astrocyte cultures. Brain Res Bull 2004;64(2):139–43.
  • Ziegler DR, Oliveira DL, Pires C, Ribeiro L, Leite M, Mendez A, et al. Ketogenic diet fed rats have low levels of S100B in cerebrospinal fluid. Neurosci Res 2004;50(4):375–9.
  • Lutas A, Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci 2013;36(1):32–40.
  • de Lima PA, de Brito Sampaio LP, Damasceno NRT. Neurobiochemical mechanisms of a ketogenic diet in refractory epilepsy. Clinics 2014;69(10):699–705.
  • Vizuete AF, de Souza DF, Guerra MC, Batassini C, Dutra MF, Bernardi C, et al. Brain changes in BDNF and S100B induced by ketogenic diets in Wistar rats. Life Sci. 2013;92(17–19):923–8.
  • Silva MC, Rocha J, Pires CS, Ribeiro LC, Brolese G, Leite MC, et al. Transitory gliosis in the CA3 hippocampal region in rats fed on a ketogenic diet. Nutr Neurosci 2005;8(4):259–64.
  • Schilling MA. Unraveling Alzheimer’s: making sense of the relationship between diabetes and Alzheimer’s disease. J Alzheimers Dis 2016;51(4):961–77.
  • Berger A. Insulin resistance and reduced brain glucose metabolism in the aetiology of Alzheimer’s disease. J Insulin Resist. 2016;1(1):a15.
  • De Felice FG, Lourenco MV, Ferreira ST. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement 2014;10(1 Suppl):S26–32.
  • de la Monte SM. Type 3 diabetes is sporadic Alzheimers disease: mini-review. Eur Neuropsychopharmacol 2014;24(12):1954–60.
  • Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 2012;122(4):1316–38.
  • Hosokawa K, Hamada Y, Fujiya A, Murase M, Maekawa R, Niwa Y, et al. S100b impairs glycolysis via enhanced poly(ADP-ribosyl)ation of glyceraldehyde 3-phosphate dehydrogenase in rodent muscle cells. Am J Physiol Endocrinol Metab 2017: 312(6):E471–E81.
  • Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 2011;27(1):3–20.
  • Nardin P, Tramontina F, Leite MC, Tramontina AC, Quincozes-Santos A, de Almeida LM, et al. S100b content and secretion decrease in astrocytes cultured in high-glucose medium. Neurochem Int 2007;50(5):774–82.
  • Netto CB, Conte S, Leite MC, Pires C, Martins TL, Vidal P, et al. Serum S100B protein is increased in fasting rats. Arch Med Res 2006;37(5):683–6.
  • Steiner J, Bernstein HG, Schiltz K, Haase T, Meyer-Lotz G, Dobrowolny H, et al. Decrease of serum S100B during an oral glucose tolerance test correlates inversely with the insulin response. Psychoneuroendocrinology 2014;39:33–8.
  • Suzuki F, Kato K. Inhibition of adipose S-100 protein release by insulin. Biochim Biophys Acta. 1985;845(2):311–6.
  • Hovsepyan MR, Haas MJ, Boyajyan AS, Guevorkyan AA, Mamikonyan AA, Myers SE, et al. Astrocytic and neuronal biochemical markers in the sera of subjects with diabetes mellitus. Neurosci Lett. 2004;369(3):224–7.
  • Naumovski N, Blades BL, Roach PD. Food inhibits the oral bioavailability of the major green tea antioxidant epigallocatechin gallate in humans. Antioxidants 2015;4(2):373–93.
  • Katergaris NDL, Roach PD, Naumovski N. Green Tea catechins as neuroprotective agents: systematic review of the literature in animal Pre-clinical trials. Adv Food Technol Nutr Sci Open J 2015;1(2):48–57.
  • Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes-Santos A, Nardin P, et al. Green tea (−)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav Brain Res 2013;236(1):186–93.
  • Man YG, Zhou RG, Zhao B. Efficacy of rutin in inhibiting neuronal apoptosis and cognitive disturbances in sevoflurane or propofol exposed neonatal mice. Int J Clin Exp Med 2015;8(8):14397–409.
  • Moallem SA, Hariri AT, Mahmoudi M, Hosseinzadeh H. Effect of aqueous extract of Crocus sativus L. (saffron) stigma against subacute effect of diazinon on specific biomarkers in rats. Toxicol Ind Health 2014;30(2):141–6.
  • Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, et al. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflammation 2011;8(1):64.
  • Wu CH, Huang SM, Yen GC. Silymarin: a novel antioxidant with antiglycation and antiinflammatory properties in vitro and in vivo. Antioxid Redox Signal 2011;14(3):353–66.
  • Lin YW, Hsieh CL. Oral uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats. J Ethnopharmacol. 2011;135(2):313–20.
  • Liu CH, Lin YW, Tang NY, Liu HJ, Hsieh CL. Neuroprotective effect of uncaria rhynchophylla in kainic acid-induced epileptic seizures by modulating hippocampal mossy fiber sprouting, neuron survival, astrocyte proliferation, and S100B expression. Evid Based Complement Alternat Med. 2012;2012:194790.
  • Christenson J, Whitby SJ, Mellor D, Thomas J, McKune A, Roach PD, et al. The effects of resveratrol supplementation in overweight and obese humans: a systematic review of randomized trials. Metab Syndr Relat Disord 2016;14(7):323–33.
  • Meng XJ, Wang F, Li CK. Resveratrol is neuroprotective and improves cognition in pentylenetetrazole-kindling model of epilepsy in rats. Indian J Pharm Sci 2014;76(2):125–31.
  • de Almeida LM, Pineiro CC, Leite MC, Brolese G, Tramontina F, Feoli AM, et al. Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures. Cell Mol Neurobiol 2007;27(5):661–8.
  • Schültke E, Griebel RW, Juurlink BHJ. Quercetin administration after spinal cord trauma changes S-100β levels. Can J Neurol Sci 2010;37(2):223–8.
  • Pan HC, Yang DY, Ho SP, Sheu ML, Chen CJ, Hwang SM, et al. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto. J Biomed Sci 2009;16:75.
  • Huang SM, Wu CH, Yen GC. Effects of flavonoids on the expression of the pro-inflammatory response in human monocytes induced by ligation of the receptor for AGEs. Mol Nutr Food Res 2006;50(12):1129–39.
  • Qin B, Panickar KS, Anderson RA. Cinnamon polyphenols attenuate the hydrogen peroxide-induced down regulation of S100β secretion by regulating sirtuin 1 in C6 rat glioma cells. Life Sci 2014;102(1):72–9.
  • Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med 2017:1–9.
  • Al-Jarrah MD, Jamous M. Effect of endurance exercise training on the expression of GFAP, S100B, and NSE in the striatum of chronic/progressive mouse model of Parkinson’s disease. NeuroRehabilitation. 2011;28(4):359–63.
  • Koh SX, Lee JK. S100b as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med 2014;44(3):369–85.
  • Graham MR, Myers T, Evans P, Davies B, Cooper SM, Bhattacharya K, et al. Direct hits to the head during amateur boxing is associated with a rise in serum biomarkers for brain injury. Int J Immunopathol Pharmacol 2011;24(1):119–25.
  • Bouvier D, Duret T, Abbot M, Stiernon T, Pereira B, Coste A, et al. Utility of S100B serum level for the determination of concussion in male rugby players. Sports Med 2016;47(4):781–9.
  • Marchi N, Bazarian JJ, Puvenna V, Janigro M, Ghosh C, Zhong J, et al. Consequences of repeated blood-brain barrier disruption in football players. PLoS One 2013;8(3):e56805.
  • Otto M, Holthusen S, Bahn E, Sohnchen N, Wiltfang J, Geese R, et al. Boxing and running lead to a rise in serum levels of S-100B protein. Int J Sports Med. 2000;21(8):551–5.
  • Dietrich MO, Tort AB, Schaf DV, Farina M, Goncalves CA, Souza DO, et al. Increase in serum S100B protein level after a swimming race. Can J Appl Physiol 2003;28(5):710–6.
  • Bjursten H, Ederoth P, Sigurdsson E, Gottfredsson M, Syk I, Einarsson O, et al. S100b profiles and cognitive function at high altitude. High Alt Med Biol 2010;11(1):31–8.
  • Roh H-T, Cho S-Y, So W-Y. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise. J Sport Health Sci 2016;6:225–30.
  • Steiner J, Schiltz K, Walter M, Wunderlich MT, Keilhoff G, Brisch R, et al. S100b serum levels are closely correlated with body mass index: an important caveat in neuropsychiatric research. Psychoneuroendocrinology 2010;35(2):321–4.
  • Gross S, Homan van der Heide JJ, van Son WJ, Gans RO, Foell D, Navis G, et al. Body mass index and creatinine clearance are associated with steady-state serum concentrations of the cell damage marker S100B in renal transplant recipients. Med Sci Monit 2010;16(7):CR318–24.
  • Holtkamp K, Buhren K, Ponath G, von Eiff C, Herpertz-Dahlmann B, Hebebrand J, et al. Serum levels of S100B are decreased in chronic starvation and normalize with weight gain. J Neural Transm 2008;115(6):937–40.
  • Ehrlich S, Salbach-Andrae H, Weiss D, Burghardt R, Goldhahn K, Craciun EM, et al. S100b in underweight and weight-recovered patients with anorexia nervosa. Psychoneuroendocrinology 2008;33(6):782–8.
  • Mosconi L, Murray J, Tsui WH, Li Y, Davies M, Williams S, et al. Mediterranean diet and magnetic resonance imaging-assessed brain atrophy in cognitively normal individuals at risk for Alzheimer’s disease. J Prev Alzheimer’s Dis. 2014;1(1):23–32.
  • Bell GA, Kantor ED, Lampe JW, Kristal AR, Heckbert SR, White E. Intake of long-chain -3 fatty acids from diet and supplements in relation to mortality. Am J Epidemiol 2014;179(6):710–20.
  • Ren H, Luo C, Feng Y, Yao X, Shi Z, Liang F, et al. Omega-3 polyunsaturated fatty acids promote amyloid-beta clearance from the brain through mediating the function of the glymphatic system. FASEB J 2016;31(1):282–93.
  • Belkouch M, Hachem M, Elgot A, Lo Van A, Picq M, Guichardant M, et al. The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer’s disease. J Nutr Biochem 2016;38:1–11.
  • Pitsavos C, Panagiotakos DB, Tzima N, Chrysohoou C, Economou M, Zampelas A, et al. Adherence to the Mediterranean diet is associated with total antioxidant capacity in healthy adults: the ATTICA study. Am J Clin Nutr 2005;82(3):694–9.
  • Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 2005;352(23):2379–88.
  • Wu A, Noble EE, Tyagi E, Ying Z, Zhuang Y, Gomez-Pinilla F. Curcumin boosts DHA in the brain: implications for the prevention of anxiety disorders. Biochim Biophys Acta 2015;1852(5):951–61.
  • Nehls M. Unified theory of Alzheimer’s disease (UTAD): implications for prevention and curative therapy. J Mol Psychiatry 2016;4:3.
  • Paoli A, Bianco A, Damiani E, Bosco G. Ketogenic diet in neuromuscular and neurodegenerative diseases. BioMed Res Int 2014;2014:10.
  • Storoni M, Plant GT. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Mult Scler Int 2015;2015:9.
  • Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 2013;67(8):789–96.
  • Cahill GF, Jr., Owen OE. Starvation and survival. Trans Am Clin Climatol Assoc 1968;79:13–20.
  • Van der Auwera I, Wera S, Van Leuven F, Henderson ST. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr Metab (Lond) 2005;2:28.
  • Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL. D-beta -hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci U S A 2000;97(10):5440–4.
  • Li Y, Hruby A, Bernstein AM, Ley SH, Wang DD, Chiuve SE, et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease. J Am Coll Cardiol 2015;66(14):1538–48.
  • Murray AJ, Knight NS, Cole MA, Cochlin LE, Carter E, Tchabanenko K, et al. Novel ketone diet enhances physical and cognitive performance. FASEB J 2016;30(12):4021–32.
  • Reger MA, Henderson ST, Hale C, Cholerton B, Baker LD, Watson GS, et al. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging 2004;25(3):311–4.
  • Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement 2015;11(1):99–103.
  • Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab 2009;6:31.
  • Pawlosky RJ, Kemper MF, Kashiwaya Y, King MT, Mattson MP, Veech RL. Effects of a dietary ketone ester on hippocampal glycolytic and TCA cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer’s disease. J Neurochem 2017;141(2):195–207.
  • Gardener SL, Rainey-Smith SR, Barnes MB, Sohrabi HR, Weinborn M, Lim YY, et al. Dietary patterns and cognitive decline in an Australian study of ageing. Mol Psychiatry 2015;20(7):860–6.
  • Morris MC, Brockman J, Schneider JA, Wang Y, Bennett DA, Tangney CC, et al. Association of seafood consumption, brain Mercury level, and APOE epsilon4 status with brain neuropathology in older adults. JAMA 2016;315(5):489–97.
  • Yassine HN, Braskie MN, Mack WJ, Castor KJ, Fonteh AN, Schneider LS, et al. Association of docosahexaenoic acid supplementation with Alzheimer disease stage in apolipoprotein E epsilon4 carriers: a review. JAMA Neurol 2017;74(3):339–47.
  • Lane-Donovan C, Herz J. High-Fat diet changes hippocampal apolipoprotein E (ApoE) in a genotype- and carbohydrate-dependent manner in mice. PLoS One 2016;11(2):e0148099.
  • Huebbe P, Dose J, Schloesser A, Campbell G, Gluer CC, Gupta Y, et al. Apolipoprotein E (APOE) genotype regulates body weight and fatty acid utilization-studies in gene-targeted replacement mice. Mol Nutr Food Res 2015;59(2):334–43.
  • Hanson AJ, Bayer JL, Baker LD, Cholerton B, VanFossen B, Trittschuh E, et al. Differential effects of meal challenges on cognition, metabolism, and biomarkers for apolipoprotein E varepsilon4 carriers and adults with mild cognitive impairment. J Alzheimers Dis 2015;48(1):205–18.
  • Luchsinger JA, Tang MX, Shea S, Mayeux R. Caloric intake and the risk of Alzheimer disease. Arch Neurol 2002;59(8):1258–63.
  • Portela LVC, Tort ABL, Schaf DV, Ribeiro L, Nora DB, Walz R, et al. The serum S100B concentration is age dependent. Clin Chem 2002;48(6):950–2.
  • Kuusisto J, Koivisto K, Mykkänen L, Helkala E-L, Vanhanen M, Hänninen T, et al. Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein e4 phenotype: cross sectional population based study. BMJ 1997;315(7115):1045–9.
  • Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, et al. Glucose levels and risk of dementia. N Engl J Med 2013;369(6):540–8.
  • Blazquez E, Velazquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol 2014;5:161.
  • Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D, Jr. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 1998;50(1):164–8.
  • Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment. Arch Neurol 2012;69(1):29–38.
  • Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A, et al. Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimers Dis 2015;44(3):897–906.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.