Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 22, 2019 - Issue 2
1,169
Views
80
CrossRef citations to date
0
Altmetric
Reviews

Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans

, &

References

  • Semaming Y, Pannengpetch P, Chattipakorn SC, Chattipakorn N. Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine. Evid Based Complement Alternat Med 2015;2015:593902. doi: 10.1155/2015/593902
  • Khan AK, Rashid R, Fatima N, Mahmood S, Mir S, Khan S, et al. Pharmacological activities of protocatechuic acid. Acta Pol Pharm – Drug Res 2015;72(4):643–50.
  • Kakkar S, Bais S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol 2014;2014:1–9. doi: 10.1155/2014/952943
  • Da-Costa-Rocha ICAA, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L. – a phytochemical and pharmacological review. Food Chem 2014;165:424–43. doi: 10.1016/j.foodchem.2014.05.002
  • Shen J, Yang K, Sun C, Zheng M. Analysis of active components in Salvia miltiorrhiza injection based on vascular endothelial cell protection. Acta Pharmaceut 2014;64(3):325–34. doi: 10.2478/acph-2014-0027
  • Guan S, Bao YM, Jiang B, An LJ. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Eur J Pharmacol 2006;538(1–3):73–9. doi: 10.1016/j.ejphar.2006.03.065
  • Nakamura Y, Torikai K, Ohigashi H. A catechol antioxidant protocatechuic acid potentiates inflammatory leukocyte-derived oxidative stress in mouse skin via a tyrosinase bioactivation pathway. Free Radic Biol Med 2001;30(9):967–78. doi: 10.1016/S0891-5849(01)00481-6
  • Shi S, Zhao X, Liu A, Liu B, Li H, Wu B, et al. Protective effect of n-butanol extract from Alpinia oxyphylla on learning and memory impairments. Physiol Behav 2015;139:13–20. doi: 10.1016/j.physbeh.2014.11.016
  • Song Y, Cui T, Xie N, Zhang X, Qian Z, Liu J. Protocatechuic acid improves cognitive deficits and attenuates amyloid deposits, inflammatory response in aged AβPP/PS1 double transgenic mice. Int Immunopharmacol 2014;20(1):276–81. doi: 10.1016/j.intimp.2014.03.006
  • Thakare VN, Dhakane VD, Patel BM. Attenuation of acute restraint stress-induced depressive like behavior and hippocampal alterations with protocatechuic acid treatment in mice. Metab Brain Dis 2016;32(2):401–13. doi: 10.1007/s11011-016-9922-y
  • Yin X, Zhang X, Lv C, Li C, Yu Y, Wang X, et al. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci Rep 2015;5:14507. doi: 10.1038/srep14507
  • D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 2007;43(4):348–61.
  • Vitaglione P, Donnarumma G, Napolitano A, Galvano F, Gallo A, Scalfi L, et al. Protocatechuic acid is the major human metabolite of cyanidin-glucosides. J Nutr 2007;137(9):2043–8. doi: 10.1093/jn/137.9.2043
  • Olivas-Aguirre F, Rodrigo-García J, Martínez-Ruiz N, Cárdenas-Robles A, Mendoza-Díaz S, Álvarez-Parrilla E, et al. Cyanidin-3-O-glucoside: physical-chemistry, foodomics and health effects. Molecules 2016;21(9):1264. doi: 10.3390/molecules21091264
  • Min SW, Ryu SN, Kim DH. Anti-inflammatory effects of black rice, cyanidin-3-O-β-d-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int Immunopharmacol 2010;10(8):959–66. doi: 10.1016/j.intimp.2010.05.009
  • Kay CD, Kroon PA, Cassidy A. The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products. Mol Nutr Food Res 2009;53(S1):S92–101. doi: 10.1002/mnfr.200800461
  • Ichiyanagi T, Rahman MM, Hatano Y, Konishi T, Ikeshiro Y. Protocatechuic acid is not the major metabolite in rat blood plasma after oral administration of cyanidin 3-O-β-d-glucopyranoside. Food Chem 2007;105(3):1032–9. doi: 10.1016/j.foodchem.2007.04.066
  • Tsuda T, Horio F, Osawa T. Absorption and metabolism of cyanidin 3-O-β-D-glucoside in rats. FEBS Lett 1999;449(2–3):179–82. doi: 10.1016/S0014-5793(99)00407-X
  • Ávila M, Hidalgo M, Sánchez-Moreno C, Pelaez C, Requena T, Pascual-Teresa SD. Bioconversion of anthocyanin glycosides by Bifidobacteria and lactobacillus. Food Res Int 2009;42(10):1453–61. doi: 10.1016/j.foodres.2009.07.026
  • Ferrars RMD, Czank C, Zhang Q, Botting NP, Kroon PA, Cassidy A, et al. The pharmacokinetics of anthocyanins and their metabolites in humans. Brit J Pharmacol 2014;171(13):3268–82. doi: 10.1111/bph.12676
  • Rio DD, Borges G, Crozier A. Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Brit J Nutr 2010;104(S3):S67–90. doi: 10.1017/S0007114510003958
  • Hanske L, Engst W, Loh G, Sczesny S, Blaut M, Braune A. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Brit J Nutr 2013;109(08):1433–41. doi: 10.1017/S0007114512003376
  • Konczak I, Zhang W. Anthocyanins – more than nature’s colours. J Biomed Biotechnol 2004;2004(5):239–40. doi: 10.1155/S1110724304407013
  • Fang J. Bioavailability of anthocyanins. Drug Metab Rev 2014;46(4):508–20. doi: 10.3109/03602532.2014.978080
  • Vauzour D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longev 2012;2012:914273. doi: 10.1155/2012/914273
  • Lin CY, Tsai SJ, Huang CS, Yin MC. Antiglycative effects of protocatechuic acid in the kidneys of diabetic mice. J Agric Food Chem 2011;59(9):5117–24. doi: 10.1021/jf200103f
  • Mazza G, Kay CD, Cottrell T, Holub BJ. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 2002;50(26):7731–7. doi: 10.1021/jf020690l
  • Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. Dis Mon 2010;56(9):484–546. doi: 10.1016/j.disamonth.2010.06.001
  • Haines A, Katona C. Dementia in old age. Occas Pap R Coll Gen Pract 1992;58:62–6.
  • Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015;2015:1–18. doi: 10.1155/2015/610813
  • Ban JY, Cho SO, Jeon SY, Bae K, Song KS, Seong YH. 3,4-Dihydroxybenzoic acid from Smilacis chinae rhizome protects amyloid β protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett 2007;420(2):184–8. doi: 10.1016/j.neulet.2007.05.009
  • Hornedo-Ortega R, Álvarez-Fernández MA, Cerezo AB, Richard T, Troncoso AM, García Parrilla MC. Protocatechuic acid: inhibition of fibril formation, destabilization of pre-formed fibrils of amyloid-β and α-synuclein, and neuroprotection. J Agric Food Chem 2016;64(41):7722–32. doi: 10.1021/acs.jafc.6b03217
  • Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 1993;13(4):1676–87. doi: 10.1523/JNEUROSCI.13-04-01676.1993
  • Ono K, Hasegawa K, Naiki H, Yamada M. Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. BBA Mol Basis Dis 2004;1690(3):193–202. doi: 10.1016/j.bbadis.2004.06.008
  • Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 2010;107(17):7710–5. doi: 10.1073/pnas.0910723107
  • Subash S, Essa M, Braidy N, Awlad-Thani K, Vaishnav R, Al-Asmi A, et al. Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer’s disease. J Ayurveda Integr Med 2015;6(2):111–20. doi: 10.4103/0975-9476.159073
  • Leow SS, Sekaran SD, Tan Y, Sundram K, Sambanthamurthi R. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice. Nutr Neurosci 2013;16(5):207–17. doi: 10.1179/1476830512Y.0000000047
  • Metcalfe S, Bickerton S, Fahmy T. Neurodegenerative disease: a perspective on cell-based therapy in the new era of cell-free nano-therapy. Curr Pharm Design 2016;22(999):1–8.
  • Masella R, Santangelo C, D’Archivio M, LiVolti G, Giovannini C, Galvano F. Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms. Curr Med Chem 2012;19(18):2901–17. doi: 10.2174/092986712800672102
  • Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000;20(15):5709–14. doi: 10.1523/JNEUROSCI.20-15-05709.2000
  • Rogers J, Webster S, Lue LF, Brachova L, Civin WH, Emmerling M, et al. Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 1996;17(5):681–6. doi: 10.1016/0197-4580(96)00115-7
  • McGeer PL, Rogers J, Mcgeer EG. Inflammation, antiinflammatory agents, and Alzheimer’s disease: the last 22 years. J Alzheimers Dis 2016;54(3):853–7. doi: 10.3233/JAD-160488
  • Lin CY, Huang CS, Huang CY, Yin MC. Anticoagulatory, antiinflammatory, and antioxidative effects of protocatechuic acid in diabetic mice. J Agric Food Chem 2009;57(15):6661–7. doi: 10.1021/jf9015202
  • Grosser T. The pharmacology of selective inhibition of COX-2. Thromb Haemost 2006;96(4):393.
  • Zhang Z, Li G, Szeto SS, Chong CM, Quan Q, Huang C, et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 2015;84:331. doi: 10.1016/j.freeradbiomed.2015.02.030
  • Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 2005;7(3–4):395–403. doi: 10.1089/ars.2005.7.395
  • Wu YX, Wu TY, Xu BB, Xu XY, Chen HG, Li XY, et al. Protocatechuic acid inhibits osteoclast differentiation and stimulates apoptosis in mature osteoclasts. Biomed Pharmacother 2016;82:399–405. doi: 10.1016/j.biopha.2016.05.008
  • Li J, O W, Li W, Jiang ZG, Ghanbari H. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013;14(12):24438–75. doi: 10.3390/ijms141224438
  • Miller E, Morel A, Saso L, Saluk J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. Oxid Med Cell Longev 2014;2014:1–10. doi: 10.1155/2014/572491
  • Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 2015;24(4):325–40. doi: 10.5607/en.2015.24.4.325
  • Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 2015;74:101–10. doi: 10.1016/j.biopha.2015.07.025
  • de la Monte SM, Wands JR. Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 2006;9(2):167–81. doi: 10.3233/JAD-2006-9209
  • Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, et al. β-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 2005;92(3):628–36. doi: 10.1111/j.1471-4159.2004.02895.x
  • Chen G, Luo J. Anthocyanins: Are they beneficial in treating ethanol neurotoxicity?. Neurotox Res 2010;17(1):91–101. doi: 10.1007/s12640-009-9083-4
  • An LJ, Guan S, Shi GF, Bao YM, Duan YL, Jiang B. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem Toxicol 2006;44(3):436–43. doi: 10.1016/j.fct.2005.08.017
  • Guan S, Jiang B, Bao YM, An LJ. Protocatechuic acid suppresses MPP+-induced mitochondrial dysfunction and apoptotic cell death in PC12 cells. Food Chem Toxicol 2006;44(10):1659–66. doi: 10.1016/j.fct.2006.05.004
  • Semaming Y, Kumfu S, Pannangpetch P, Chattipakorn SC, Chattipakorn N. Protocatechuic acid exerts a cardioprotective effect in type 1 diabetic rats. J Endocrinol 2014;223(1):13–23. doi: 10.1530/JOE-14-0273
  • Galano A, Pérez-González A. On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution. Theor Chem Acc 2012;131(9):1–13. doi: 10.1007/s00214-012-1265-0
  • Khan W, Priyadarshini M, Zakai HA, Kamal MA, Alam Q. A brief overview of tyrosine hydroxylase and α-synuclein in the parkinsonian brain. CNS Neurol Disord Drug Targets 2012;11(4):456–62. doi: 10.2174/187152712800792929
  • Spencer B, Valera E, Rockenstein E, Overk C, Mante M, Adame A, et al. Anti-α-synuclein immunotherapy reduces α-synuclein propagation in the axon and degeneration in a combined viral vector and transgenic model of synucleinopathy. Acta Neuropathol Commun 2017;5(1):7. Available from: https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478016-0410-8 doi: 10.1186/s40478-016-0410-8
  • Lee SJ, Desplats P, Sigurdson C, Tsigelny I, Masliah E. Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 2010;6(12):702–6. doi: 10.1038/nrneurol.2010.145
  • Zhao X, Zhai S, An MS, Wang YH, Yang YF, Ge HQ, et al. Neuroprotective effects of protocatechuic aldehyde against neurotoxin-induced cellular and animal models of Parkinson’s disease. PloS One 2013;8(10): e78220. https://doi.org/10.1371/journal.pone.0078220
  • Zhang HN, An CN, Xu M, Guo DA, Li M, Pu XP. Protocatechuic acid inhibits rat pheochromocytoma cell damage induced by a dopaminergic neurotoxin. Biol Pharm Bull 2009;32(11):1866–9. doi: 10.1248/bpb.32.1866
  • Riederer P, Laux G. MAO-inhibitors in Parkinson’s disease. Exp Neurobiol 2011;20(1):1–17. doi: 10.5607/en.2011.20.1.1
  • Kim JH, Kim GH, Hwang KH. Monoamine oxidase and dopamine β-hydroxylase inhibitors from the fruits of gardenia jasminoides. Biomol Ther 2012;20(2):214–9. doi: 10.4062/biomolther.2012.20.2.214
  • Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 2003;91(4):267–70. doi: 10.1254/jphs.91.267
  • Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 2009;5(6):311–22. doi: 10.1038/nrneurol.2009.54
  • Mattson MP. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 2008;1144(1):97–112. doi: 10.1196/annals.1418.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.