Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 22, 2019 - Issue 4
722
Views
24
CrossRef citations to date
0
Altmetric
Articles

Blueberry supplementation attenuates microglia activation and increases neuroplasticity in mice consuming a high-fat diet

, , , , &

References

  • Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 2015;219:1–8.
  • West DB, York B. Dietary fat, genetic predisposition, and obesity: lessons from animal models. Am J Clin Nutr 1998;67:505S–12S. doi: 10.1093/ajcn/67.3.505S
  • Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr 2004;23(4):447–56. doi: 10.1016/j.clnu.2004.02.006
  • Singh RB, Gupta S, Dherange P, De Meester F, Wilczynska A, Alam SE, et al. Metabolic syndrome: a brain disease. Can J Physiol Pharmacol 2012;90:1171–83. doi: 10.1139/y2012-122
  • Cai D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metab 2013;24:40–7. doi: 10.1016/j.tem.2012.11.003
  • Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO, et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 2010;114:1581–9. doi: 10.1111/j.1471-4159.2010.06865.x
  • Park HR, Park M, Choi J, Park KY, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 2010;482:235–9. doi: 10.1016/j.neulet.2010.07.046
  • Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, et al. Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol 2010;219:25–32. doi: 10.1016/j.jneuroim.2009.11.010
  • White CL, Pistell PJ, Purpera MN, Gupta S, Fernandez-Kim SO, Hise TL, et al. Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiol Dis 2009;35:3–13. doi: 10.1016/j.nbd.2009.04.002
  • Baufeld C, Osterloh A, Prokop S, Miller KR, Heppner FL. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia. Acta Neuropathol 2016;132(3):361–75. doi: 10.1007/s00401-016-1595-4
  • Hao S, Dey A, Yu X, Stranahan AM. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun 2016;51:230–9. doi: 10.1016/j.bbi.2015.08.023
  • Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 2013;39(1):19–34. doi: 10.1111/j.1365-2990.2012.01306.x
  • Raj DDA, Moser J, van der Pol SMA, van Os RP, Holtman IR, Brouwer N, et al. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood–brain barrier dysregulation in a mouse model of telomere shortening. Aging Cell 2015;14:1003–13. doi: 10.1111/acel.12370
  • Streit WJ. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002;40:133–9. doi: 10.1002/glia.10154
  • Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 2003;100(23):13632–7. doi: 10.1073/pnas.2234031100
  • Ganguly P, Brenhouse HC. Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity. Dev Cogn Neurosci 2015;11:18–30. doi: 10.1016/j.dcn.2014.07.001
  • Ladeby R, Wirenfeldt M, Garcia-Ovejero D, Fenger C, Dissing-Olesen L, Dalmau I, et al. Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 2005;48(2):196–206. doi: 10.1016/j.brainresrev.2004.12.009
  • Cai M, Wang H, Li JJ, Zhang YL, Xin L, Li F, et al. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise. Brain Behav Immun 2016;57:347–59. doi: 10.1016/j.bbi.2016.05.010
  • Smith, Gwenn S. Aging and neuroplasticity. Dialogues Clin Neurosci 2013;15(1):3–5.
  • Giacalone M, Di Sacco F, Traupe I, Topini R, Forfori F, Giunta F. Antioxidant and neuroprotective properties of blueberry polyphenols: a critical review. Nutr Neurosci 2011;14:119–25. doi: 10.1179/1476830511Y.0000000007
  • Lau FC, Shukitt-Hale B, Joseph JA. Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. J Neurosci Res 2007;42:299–318.
  • Shukitt-Hale B, Lau FC, Joseph JA. Berry fruit supplementation and the aging brain. J Agric Food Chem 2008;56:636–41. doi: 10.1021/jf072505f
  • Willis LM, Freeman L, Bickford PC, Quintero EM, Umphlet CD, Moore AB, et al. Blueberry supplementation attenuates microglial activation in hippocampal intraocular grafts to aged hosts. Glia 2010;58:679–90.
  • Carey AN, Fisher DR, Rimando AM, Gomes SM, Bielinski DF, Shukitt-Hale B. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia. J Agric Food Chem 2013;61(25):5979–86. doi: 10.1021/jf400342g
  • Lau FC, Bielinski DF, Joseph JA. Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia. J Neurosci Res 2007;85(5):1010–7. doi: 10.1002/jnr.21205
  • Galli RL, Shukitt-Hale B, Youdim KA, Joseph JA. Fruit polyphenolics and brain aging: nutritional interventions targeting age-related neuronal and behavioral deficits. Ann NY Acad Sci 2002;959:128–32. doi: 10.1111/j.1749-6632.2002.tb02089.x
  • Goyarzu P, Malin DH, Lau FC, Taglialatela G, Moon WD, Jennings R, et al. Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutri Neurosci 2004;7:75–83. doi: 10.1080/10284150410001710410
  • Malin DH, Lee DR, Goyarzu P, Chang YH, Ennis LJ, Beckett E, et al. Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats. Nutrition 2011;27:338–42. doi: 10.1016/j.nut.2010.05.001
  • Shukitt-Hale B, Galli R, Meterko V, Carey A, Bielinski D, McGhie T, et al. Dietary supplementation with fruit polyphenolics ameliorates age-related deficits in behavior and neuronal markers of inflammation and oxidative stress. Age 2005;27:49–57. doi: 10.1007/s11357-005-4004-9
  • Rendeiro C, Vauzour D, Kean RJ, Butler LT, Rattray M, Spencer JP, et al. Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology 2012;223(3):319–30. doi: 10.1007/s00213-012-2719-8
  • Shukitt-Hale B, Bielinski DF, Lau FC, Willis LM, Carey AN, Joseph JA. The beneficial effects of berries on cognition, motor behaviour and neuronal function in ageing. Br J Nutr 2015;114:1542–9. doi: 10.1017/S0007114515003451
  • Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT, Ellis JA, et al. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 2008;45(3):295–305. doi: 10.1016/j.freeradbiomed.2008.04.008
  • Carey AN, Gomes SM, Shukitt-Hale B. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet. J Agric Food Chem 2014;62(18):3972–8. doi: 10.1021/jf404565s
  • Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab 2009;10:260–72. doi: 10.1016/j.cmet.2009.08.009
  • Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, et al. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 2004;24:1844–54. doi: 10.1128/MCB.24.5.1844-1854.2004
  • Park HS, Jin DK, Shin SM, Jang MK, Longo N, Park JW, et al. Impaired generation of reactive oxygen species in leprechaunism through downregulation of Nox4. Diabetes 2005;54:3175–81. doi: 10.2337/diabetes.54.11.3175
  • Murray C, Sanderson DJ, Barkus C, Deacon RM, Rawlins JN, Bannerman DM, et al. Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol Aging 2012;33:603–16. doi: 10.1016/j.neurobiolaging.2010.04.002
  • Casadesus G, Shukitt-Hale B, Stellwagen HM, Zhu X, Lee HG, Smith MA, et al. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 2004;7(5–6):309–16. doi: 10.1080/10284150400020482
  • Elks CM, Francis J, Stull AJ, Cefalu WT, Shukitt-Hale B, Ingram DK. Overview of the health properties of blueberries. In: Skinner M, Hunter D, (eds.) Bioactives in fruit: health benefits and functional foods. Oxford: Wiley-Blackwell; 2013. p. 251–72.
  • Prior RL, Lazarus SA, Cao G, Muccitelli H, Hammerstone JF. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 2001;49(3):1270–6. doi: 10.1021/jf001211q
  • Sellappan S, Akoh CC, Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem 2002;50:2432–8. doi: 10.1021/jf011097r
  • Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci 2004;27:447–52. doi: 10.1016/j.tins.2004.05.013
  • Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003;304:1–7. doi: 10.1124/jpet.102.035048
  • Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, et al. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflamm 2011;8:64. doi: 10.1186/1742-2094-8-64
  • Nair AR, Masson GS, Ebenezer PJ, Del Piero F, Francis J. Role of TLR4 in lipopolysaccharide-induced acute kidney injury: protection by blueberry. Free Radic Biol Med 2014;71:16–25. doi: 10.1016/j.freeradbiomed.2014.03.012
  • Joseph JA, Denisova NA, Bielinski D, Fisher DR, Shukitt-Hale B. Oxidative stress protection and vulnerability in aging: putative nutritional implications for intervention. Mech Ageing Dev 2000;116:141–53.
  • Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012;142(5):1100–1. doi: 10.1053/j.gastro.2012.01.034
  • Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 2014;344(6184):630–4. doi: 10.1126/science.1251141
  • Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 2014;20(6):659–63. doi: 10.1038/nm.3569
  • Fisher DR, Poulose SM, Bielinski DF, Shukitt-Hale B. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in BV-2 microglial cells. Nutr Neurosci 2017;20(2):103–9.
  • Johnson LA, Zuloaga KL, Kugelman TL, Mader KS, Morré JT, Zuloaga DG, et al. Amelioration of metabolic syndrome-associated cognitive impairments in mice via a reduction in dietary fat content or infusion of non-diabetic plasma. EBioMedicine 2016;3:26–42. doi: 10.1016/j.ebiom.2015.12.008
  • Li Y, Mouche S, Sajic T, Veyrat-Durebex C, Supale R, Pierroz D, et al. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int J Obes 2012;36:1503–13. doi: 10.1038/ijo.2011.279
  • Wu X, Williams KJ. NOX4 pathway as a source of selective insulin resistance and responsiveness. Arterioscler Thromb Vasc Biol 2012;32:1236–45. doi: 10.1161/ATVBAHA.111.244525
  • Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist 2012;18(1):82–97. doi: 10.1177/1073858410397054
  • Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci 2010;3:1. doi: 10.3389/neuro.02.001.2010
  • An JJ, Liao GY, Kinney CE, Sahibzada N, Xu B. Discrete BDNF neurons in the paraventricular hypothalamus control feeding and energy expenditure. Metab 2015;22(1):175–88.
  • Bonaccorso S, Sodhi M, Li J, Bobo WV, Chen Y, Tumuklu M, et al. The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with increased body mass index and insulin resistance measures in bipolar disorder and schizophrenia. Bipolar Disord 2015;17(5):528–535. doi: 10.1111/bdi.12294
  • Cheng B, Mattson MP. NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res 1994;640(1–2):56–67. doi: 10.1016/0006-8993(94)91857-0
  • Rendeiro C, Vauzour D, Rattray M, Waffo-Téguo P, Mérillon JM, Butler LT, et al. Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor. PLoS ONE 2013;8(5):e63535. doi: 10.1371/journal.pone.0063535
  • Tan L, Yang HP, Pang W, Lu H, Hu YD, Li J, et al. Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice. Biomed Environ Sci 2014;27(3):186–96.
  • Williams RJ, Spencer JP. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012;52(1):35–45. doi: 10.1016/j.freeradbiomed.2011.09.010
  • Lin HC, Hsieh MJ, Peng CH, Yang SF, Huang CN. Pterostilbene inhibits vascular smooth muscle cells migration and matrix metalloproteinase-2 through modulation of MAPK pathway. J Food Sci 2015;80(10):H2331–5. doi: 10.1111/1750-3841.13002
  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 2005;21(1):1–14. doi: 10.1111/j.1460-9568.2004.03813.x
  • Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 2002;82(6):1367–75. doi: 10.1046/j.1471-4159.2002.01085.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.