Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 22, 2019 - Issue 4
1,241
Views
38
CrossRef citations to date
0
Altmetric
Articles

Early-life sugar consumption has long-term negative effects on memory function in male rats

, , &

References

  • Francis H, Stevenson R. The longer-term impacts of western diet on human cognition and the brain. Appetite 2013;63:119–28. doi: 10.1016/j.appet.2012.12.018
  • Davidson TL, Monnot A, Neal AU, Martin AA, Horton JJ, Zheng W. The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol Behav 2012;107(1):26–33. doi: 10.1016/j.physbeh.2012.05.015
  • Hsu TM, Konanur VR, Taing L, Usui R, Kayser BD, Goran MI, et al. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 2015;25(2):227–39. doi: 10.1002/hipo.22368
  • Kanoski SE, Davidson TL. Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav 2011;103(1):59–68. doi: 10.1016/j.physbeh.2010.12.003
  • Kanoski SE, Meisel RL, Mullins AJ, Davidson TL. The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behav Brain Res 2007;182(1):57–66. doi: 10.1016/j.bbr.2007.05.004
  • Kanoski SE, Zhang Y, Zheng W, Davidson TL. The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. J Alzheimers Dis 2010;21(1):207–19. doi: 10.3233/JAD-2010-091414
  • Noble EE, Kanoski SE. Early life exposure to obesogenic diets and learning and memory dysfunction. Curr Opin Behav Sci 2016;9:7–14. doi: 10.1016/j.cobeha.2015.11.014
  • Noble EE, Mavanji V, Little MR, Billington CJ, Kotz CM, Wang C. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons. Neurobiol Learn Mem 2014;114C:40–50. doi: 10.1016/j.nlm.2014.04.006
  • Molteni R, Barnard RJ, Ying Z, Roberts CK, Gómez-Pinilla F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 2002;112(4):803–14. doi: 10.1016/S0306-4522(02)00123-9
  • Molteni R, Wu A, Vaynman S, Ying Z, Barnard RJ, Gómez-Pinilla F. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 2004;123(2):429–40. doi: 10.1016/j.neuroscience.2003.09.020
  • Beilharz JE, Kaakoush NO, Maniam J, Morris MJ. The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behav Immun 2016;57:304–13. doi: 10.1016/j.bbi.2016.07.151
  • Beilharz JE, Maniam J, Morris MJ. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats. Brain Behav Immun 2014;37:134–41. doi: 10.1016/j.bbi.2013.11.016
  • Beilharz JE, Maniam J, Morris MJ. Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation. Behav Brain Res 2016;306:1–7. doi: 10.1016/j.bbr.2016.03.018
  • Baym CL, Khan NA, Monti JM, Raine LB, Drollette ES, Moore RD, et al. Dietary lipids are differentially associated with hippocampal-dependent relational memory in prepubescent children. Am J Clin Nutr 2014;99(5):1026–32. doi: 10.3945/ajcn.113.079624
  • Khan NA, Raine LB, Drollette ES, Scudder MR, Hillman CH. The relation of saturated fats and dietary cholesterol to childhood cognitive flexibility. Appetite 2015;93:51–6. doi: 10.1016/j.appet.2015.04.012
  • Hsu TM, Kanoski SE. Blood-brain barrier disruption: mechanistic links between Western diet consumption and dementia. Front Aging Neurosci 2014;6:88. doi: 10.3389/fnagi.2014.00088
  • Martin AA, Davidson TL. Human cognitive function and the obesogenic environment. Physiol Behav 2014;136:185–93. doi: 10.1016/j.physbeh.2014.02.062
  • Stanhope KL. Sugar consumption, metabolic disease and obesity: the state of the controversy. Crit Rev Clin Lab Sci 2016;53(1):52–67. doi: 10.3109/10408363.2015.1084990
  • Reichelt AC. Adolescent maturational transitions in the prefrontal cortex and dopamine signaling as a risk factor for the development of obesity and high fat/high sugar diet induced cognitive deficits. Front Behav Neurosci 2016;10:109. doi: 10.3389/fnbeh.2016.00189
  • Ervin RB, Kit BK, Carroll MD, Ogden CL. Consumption of added sugar among US children and adolescents, 2005–2008. NCHS Data Brief 2012;87:1–8.
  • Ervin RB, Ogden CL. Consumption of added sugars among U.S. adults, 2005–2010. NCHS Data Brief 2013;122:1–8.
  • Goran MI, Dumke K, Bouret SG, Kayser B, Walker RW, Blumberg B. The obesogenic effect of high fructose exposure during early development. Nat Rev Endocrinol 2013;9(8):494–500. doi: 10.1038/nrendo.2013.108
  • Kendig MD, Boakes RA, Rooney KB, Corbit LH. Chronic restricted access to 10% sucrose solution in adolescent and young adult rats impairs spatial memory and alters sensitivity to outcome devaluation. Physiol Behav 2013;120:164–72. doi: 10.1016/j.physbeh.2013.08.012
  • Reichelt AC, Killcross S, Hambly LD, Morris MJ, Westbrook RF. Impact of adolescent sucrose access on cognitive control, recognition memory, and parvalbumin immunoreactivity. Learn Mem 2015;22(4):215–24. doi: 10.1101/lm.038000.114
  • Lasater G, Piernas C, Popkin BM. Beverage patterns and trends among school-aged children in the US, 1989–2008. Nutr J 2011;10:1210. doi: 10.1186/1475-2891-10-103
  • Kanoski SE, Grill HJ. Hippocampus contributions to food intake control: mnemonic, neuroanatomical, and endocrine mechanisms. Biol Psychiatry 2017;81(9):748–56.
  • Martínez MC, Villar ME, Ballarini F, Viola H. Retroactive interference of object-in-context long-term memory: role of dorsal hippocampus and medial prefrontal cortex. Hippocampus 2014;24(12):1482–92. doi: 10.1002/hipo.22328
  • Balderas I, Rodriguez-Ortiz CJ, Salgado-Tonda P, Chavez-Hurtado J, McGaugh JL, Bermudez-Rattoni F. The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learn Mem 2008;15(9):618–24. doi: 10.1101/lm.1028008
  • Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 2014;15(10):655–69. doi: 10.1038/nrn3785
  • Jarrard LE, Luu LP, Davidson TL. A study of hippocampal structure-function relations along the septo-temporal axis. Hippocampus 2012;22(4):680–92. doi: 10.1002/hipo.20928
  • Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010;65(1):7–19. doi: 10.1016/j.neuron.2009.11.031
  • Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 2000;24(4):417–63. doi: 10.1016/S0149-7634(00)00014-2
  • Sherman LE, Rudie JD, Pfeifer JH, Masten CL, McNealy K, Dapretto M. Development of the default mode and central executive networks across early adolescence: a longitudinal study. Dev Cogn Neurosci 2014;10:148–59. doi: 10.1016/j.dcn.2014.08.002
  • Casey BJ, Getz S, Galvan A. The adolescent brain. Dev Rev 2008;28(1):62–77. doi: 10.1016/j.dr.2007.08.003
  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999;2(10):861–3. doi: 10.1038/13158
  • Higuera-Matas A, Miguéns M, Coria SM, Assis MA, Borcel E, del Olmo N, et al. Sex-specific disturbances of the glutamate/GABA balance in the hippocampus of adult rats subjected to adolescent cannabinoid exposure. Neuropharmacology 2012;62(5–6):1975–84. doi: 10.1016/j.neuropharm.2011.12.028
  • Valladolid-Acebes I, Fole A, Martín M, Morales L, Victoria Cano M, Ruiz-Gayo M, et al. Spatial memory impairment and changes in hippocampal morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin? Neurobiol Lear Mem 2013;106:18–25. doi: 10.1016/j.nlm.2013.06.012
  • Boitard C, Cavaroc A, Sauvant J, Aubert A, Castanon N, Layé S, et al. Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun 2014;40:9–17. doi: 10.1016/j.bbi.2014.03.005
  • Boitard C, Etchamendy N, Sauvant J, Aubert A, Tronel S, Marighetto A, et al. Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus 2012;22(11):2095–100. doi: 10.1002/hipo.22032
  • Wang J, Freire D, Knable L, Zhao W, Gong B, Mazzola P, et al. Childhood and adolescent obesity and long-term cognitive consequences during aging. J Comp Neurol 2015;523(5):757–68. doi: 10.1002/cne.23708
  • Labouesse MA, Lassalle O, Richetto J, Iafrati J, Weber-Stadlbauer U, Notter T, et al. Hypervulnerability of the adolescent prefrontal cortex to nutritional stress via reelin deficiency. Mol Psychiatry 2017;22(7):961–71. doi: 10.1038/mp.2016.193
  • Jurdak N, Kanarek RB. Sucrose-induced obesity impairs novel object recognition learning in young rats. Physiol Behav 2009;96(1):1–5. doi: 10.1016/j.physbeh.2008.07.023
  • Li Y, Dai Q, Jackson JC, Zhang J. Overweight is associated with decreased cognitive functioning among school-age children and adolescents. Obesity 2008;16(8):1809–15. doi: 10.1038/oby.2008.296
  • Sellbom KS, Gunstad J. Cognitive function and decline in obesity. J Alzheimers Dis 2012;30(Suppl 2):S89–95. doi: 10.3233/JAD-2011-111073
  • Jagust W, Harvey D, Mungas D, Haan M. Central obesity and the aging brain. Arch Neurol 2005;62(10):1545–8. doi: 10.1001/archneur.62.10.1545
  • Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 2002;113(3):607–15. doi: 10.1016/S0306-4522(02)00162-8
  • Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP, et al. Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci 2005;119(5):1389–95. doi: 10.1037/0735-7044.119.5.1389
  • Khan NA, Baym CL, Monti JM, Raine LB, Drollette ES, Scudder MR, et al. Central adiposity is negatively associated with hippocampal-dependent relational memory among overweight and obese children. J Pediatr 2015;166(2):302–308.e1. doi: 10.1016/j.jpeds.2014.10.008
  • Kanoski SE, Davidson TL. Different patterns of memory impairments accompany short- and longer-term maintenance on a high-energy diet. J Exp Psychol Anim Behav Process 2010;36(2):313–9. doi: 10.1037/a0017228
  • Murray AJ, Knight NS, Cochlin LE, McAleese S, Deacon RM, Rawlins JN, et al. Deterioration of physical performance and cognitive function in rats with short-term high-fat feeding. FASEB J 2009;23(12):4353–60. doi: 10.1096/fj.09-139691
  • Agrawal R, Noble E, Vergnes L, Ying Z, Reue K, Gomez-Pinilla F. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. J Cereb Blood Flow Metab 2016;36(5):941–53. doi: 10.1177/0271678X15606719
  • Meng Q, Ying Z, Noble E, Zhao Y, Agrawal R, Mikhail A, et al. Systems nutrigenomics reveals brain gene networks linking metabolic and brain disorders. EBioMedicine 2016;7:157–66. doi: 10.1016/j.ebiom.2016.04.008
  • Ross AP, Bartness TJ, Mielke JG, Parent MB. A high fructose diet impairs spatial memory in male rats. Neurobiol Learn Mem 2009;92(3):410–6. doi: 10.1016/j.nlm.2009.05.007
  • Ross AP, Bruggeman EC, Kasumu AW, Mielke JG, Parent MB. Non-alcoholic fatty liver disease impairs hippocampal-dependent memory in male rats. Physiol Behav 2012;106(2):133–41. doi: 10.1016/j.physbeh.2012.01.008
  • Heyward FD, Gilliam D, Coleman MA, Gavin CF, Wang J, Kaas G, et al. Obesity weighs down memory through a mechanism involving the neuroepigenetic dysregulation of Sirt1. J Neurosci 2016;36(4):1324–35. doi: 10.1523/JNEUROSCI.1934-15.2016
  • Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain, Behav Immun 2015;48:165–73. doi: 10.1016/j.bbi.2015.04.004
  • Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard E, Taylor CM, Welsh DA, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biological Psychiatry 2015;77(7):607–15. doi: 10.1016/j.biopsych.2014.07.012
  • Noble EE, Hsu TM, Jones RB, Fodor AA, Goran MI, Kanoski SE. Early-life sugar consumption affects the rat microbiome independently of obesity. J Nutrit 2017;147(1):20–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.