Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 22, 2019 - Issue 8
267
Views
8
CrossRef citations to date
0
Altmetric
Articles

Comparative effect of Camellia sinensis teas on object recognition test deficit and metabolic changes induced by cafeteria diet

, , , , , , & show all

References

  • Polk SL. Definitions and demographics of obesity: diagnosis and risk factors. Anesthesiol Clin North Am 2005;23(3):397–403. v. Epub 2005/07/12.
  • McCullough AJ. Epidemiology of the metabolic syndrome in the USA. J Dig Dis 2011;12(5):333–40. Epub 2010/11/26.
  • Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011;377(9765):557–67. Epub 2011/02/08.
  • Casanova E, Baselga-Escudero L, Ribas-Latre A, Cedo L, Arola-Arnal A, Pinent M, et al. Chronic intake of proanthocyanidins and docosahexaenoic acid improves skeletal muscle oxidative capacity in diet-obese rats. J Nutr Biochem 2014;25(10):1003–10. Epub 2014/07/12.
  • Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 2005;4(8):487–99. Epub 2005/07/22.
  • Panza F, D’Introno A, Colacicco AM, Capurso C, Pichichero G, Capurso SA, et al. Lipid metabolism in cognitive decline and dementia. Brain Res Rev 2006;51(2):275–92. Epub 2006/01/18.
  • Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 2005;64(2):277–81. Epub 2005/01/26.
  • Areosa SA, Grimley EV. Effect of the treatment of Type II diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev 2002(4):CD003804. Epub 2003/01/10.
  • Eskelinen MH, Ngandu T, Helkala EL, Tuomilehto J, Nissinen A, Soininen H, et al. Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study. Int J Geriatr Psychiatry 2008;23(7):741–7. Epub 2008/01/12.
  • Solfrizzi V, Frisardi V, Capurso C, D’Introno A, Colacicco AM, Vendemiale G, et al. Dietary fatty acids in dementia and predementia syndromes: epidemiological evidence and possible underlying mechanisms. Ageing Res Rev 2010;9(2):184–99. Epub 2009/08/01.
  • Erion JR, Wosiski-Kuhn M, Dey A, Hao S, Davis CL, Pollock NK, et al. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. J Neurosci 2014;34(7):2618–31. Epub 2014/02/14.
  • Buckman LB, Hasty AH, Flaherty DK, Buckman CT, Thompson MM, Matlock BK, et al. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun 2014;35:33–42. Epub 2013/07/09.
  • Sobesky JL, Barrientos RM, De May HS, Thompson BM, Weber MD, Watkins LR, et al. High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1beta, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain Behav Immun 2014;42:22–32. Epub 2014/07/08.
  • Heyward FD, Walton RG, Carle MS, Coleman MA, Garvey WT, Sweatt JD. Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiol Learn Mem 2012;98(1):25–32. Epub 2012/05/01.
  • McNay EC, Ong CT, McCrimmon RJ, Cresswell J, Bogan JS, Sherwin RS. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem 2010;93(4):546–53. Epub 2010/02/24.
  • Ross AP, Bartness TJ, Mielke JG, Parent MB. A high fructose diet impairs spatial memory in male rats. Neurobiol Learn Mem 2009;92(3):410–6. Epub 2009/06/09.
  • Kaizer RR, da Silva AC, Morsch VM, Correa MC, Schetinger MR. Diet-induced changes in AChE activity after long-term exposure. Neurochem Res 2004;29(12):2251–5. Epub 2005/01/28.
  • Anglister L, Etlin A, Finkel E, Durrant AR, Lev-Tov A. Cholinesterases in development and disease. Chem-Biol Interact 2008;175(1–3):92–100. Epub 2008/06/24.
  • Morganstern I, Ye Z, Liang S, Fagan S, Leibowitz SF. Involvement of cholinergic mechanisms in the behavioral effects of dietary fat consumption. Brain Res 2012;1470:24–34. Epub 2012/07/07.
  • Blokland A. Acetylcholine: a neurotransmitter for learning and memory? Brain Res Brain Res Rev 1995;21(3):285–300. Epub 1995/11/01.
  • Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Correa M, et al. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 2009;610(1–3):42–8. Epub 2009/03/24.
  • Zhang X, Dong F, Ren J, Driscoll MJ, Culver B. High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol 2005;191(2):318–25. Epub 2005/01/15.
  • Souza CG, Moreira JD, Siqueira IR, Pereira AG, Rieger DK, Souza DO, et al. Highly palatable diet consumption increases protein oxidation in rat frontal cortex and anxiety-like behavior. Life Sci 2007;81(3):198–203. Epub 2007/06/19.
  • Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radical Biol Med 2008;45(4):443–52. Epub 2008/05/27.
  • Kamat CD, Gadal S, Mhatre M, Williamson KS, Pye QN, Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimer’s Dis: JAD 2008;15(3):473–93. Epub 2008/11/11.
  • Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol 2008;21(1):172–88. Epub 2007/12/07.
  • Augustyniak A, Waszkiewicz E, Skrzydlewska E. Preventive action of green tea from changes in the liver antioxidant abilities of different aged rats intoxicated with ethanol. Nutrition 2005;21(9):925–32. Epub 2005/08/09.
  • Miranda DD, Arcari DP, Pedrazzoli J, Jr., Carvalho Pde O, Cerutti SM, Bastos DH, et al. Protective effects of mate tea (Ilex paraguariensis) on H2O2-induced DNA damage and DNA repair in mice. Mutagenesis 2008;23(4):261–5. Epub 2008/03/01.
  • Flores MF, Martins A, Schimidt HL, Santos FW, Izquierdo I, Mello-Carpes PB, et al. Effects of green tea and physical exercise on memory impairments associated with aging. Neurochem Int 2014;78:53–60. Epub 2014/09/10.
  • Virmani A, Pinto L, Binienda Z, Ali S. Food, nutrigenomics, and neurodegeneration--neuroprotection by what you eat! Mol Neurobiol 2013;48(2):353–62. Epub 2013/07/03.
  • Almajano MP, Carbó R, Jiménez JAL, Gordon MH. Antioxidant and antimicrobial activities of tea infusions. Food Chem 2008;108(1):55–63.
  • Wang Y, Ho CT. Polyphenolic chemistry of tea and coffee: a century of progress. J Agric Food Chem 2009;57(18):8109–14. Epub 2009/09/02.
  • Satoh E, Tohyama N, Nishimura M. Comparison of the antioxidant activity of roasted tea with green, oolong, and black teas. Int J Food Sci Nutr 2005;56(8):551–9. Epub 2006/04/28.
  • Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 2003;133(10):3275S–84S. Epub 2003/10/02.
  • Ramadan G, El-Beih NM, Abd El-Ghffar EA. Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. Br J Nutr 2009;102(11):1611–9. Epub 2009/10/15.
  • Vinson JA, Zhang J. Black and green teas equally inhibit diabetic cataracts in a streptozotocin-induced rat model of diabetes. J Agric Food Chem 2005;53(9):3710–3. Epub 2005/04/28.
  • Heber D, Zhang Y, Yang J, Ma JE, Henning SM, Li Z. Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets. J Nutr 2014;144(9):1385–93. Epub 2014/07/18.
  • Yang CS, Landau JM. Effects of tea consumption on nutrition and health. J Nutr 2000;130(10):2409–12. Epub 2000/10/04.
  • McKay DL, Blumberg JB. The role of tea in human health: an update. J Am Coll Nutr 2002;21(1):1–13. Epub 2002/02/13.
  • Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 2008;138(9):1677–83. Epub 2008/08/22.
  • Uchiyama S, Taniguchi Y, Saka A, Yoshida A, Yajima H. Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo. Nutrition 2011;27(3):287–92. Epub 2010/07/16.
  • Burneiko RC, Diniz YS, Galhardi CM, Rodrigues HG, Ebaid GM, Faine LA, et al. Interaction of hypercaloric diet and physical exercise on lipid profile, oxidative stress and antioxidant defenses. Food Chem Toxicol 2006;44(7):1167–72. Epub 2006/03/07.
  • Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring) 2011;19(6):1109–17. Epub 2011/02/19.
  • Estadella D, Oyama LM, Damaso AR, Ribeiro EB, Oller Do Nascimento CM. Effect of palatable hyperlipidic diet on lipid metabolism of sedentary and exercised rats. Nutrition 2004;20(2):218–24. Epub 2004/02/14.
  • Bonini JS, Bevilaqua LR, Zinn CG, Kerr DS, Medina JH, Izquierdo I, et al. Angiotensin II disrupts inhibitory avoidance memory retrieval. Hormones Behav 2006;50(2):308–13. Epub 2006/05/16.
  • Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985;14(3):149–67. Epub 1985/08/01.
  • Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-Garcia JM. Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci U S A 2010;107(6):2652–7. Epub 2010/02/06.
  • Mello-Carpes PB, Izquierdo I. The nucleus of the solitary tract --> nucleus paragigantocellularis --> locus Coeruleus --> CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol Learn Mem 2013;100:56–63. Epub 2012/12/19.
  • Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin J-P, Mankhetkorn S. Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat Phys Chem 2005;72(2):323–31.
  • Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972;247(10):3170–5. Epub 1972/05/25.
  • Ellman GL, Courtney KD, Andres V, Jr., Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95. Epub 1961/07/01.
  • Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 1996;239(1):70–6. Epub 1996/07/15.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54. Epub 1976/05/07.
  • Hashimoto T, Goto M, Sakakibara H, Oi N, Okamoto M, Kanazawa K. Yellow tea is more potent than other types of tea in suppressing liver toxicity induced by carbon tetrachloride in rats. Phytotherapy Res 2007;21(7):668–70. Epub 2007/04/21.
  • Lin JK, Lin-Shiau SY. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 2006;50(2):211–7. Epub 2006/01/13.
  • Yang DJ, Hwang LS. Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea. J Chromatogr A 2006;1119(1–2):277–84. Epub 2006/01/04.
  • Jeng KC, Chen CS, Fang YP, Hou RC, Chen YS. Effect of microbial fermentation on content of statin, GABA, and polyphenols in Pu-Erh tea. J Agric Food Chem 2007;55(21):8787–92. Epub 2007/09/21.
  • Van Der Lee S, Boot LM. Spontaneous pseudopregnancy in mice. II. Acta Physiol Pharmacol Neerl 1956;5(2):213–5. Epub 1956/12/01.
  • Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring) 2007;15(6):1473–83. Epub 2007/06/15.
  • Izquierdo I, Medina JH. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 1997;68(3):285–316. Epub 1997/12/17.
  • Baddeley A, Bueno O, Cahill L, Fuster JM, Izquierdo I, McGaugh JL, et al. The brain decade in debate: I. Neurobiology of learning and memory. Braz J Med Biol Res 2000;33(9):993–1002. Epub 2000/09/06.
  • McGaugh JL, Izquierdo I. The contribution of pharmacology to research on the mechanisms of memory formation. Trends Pharmacol Sci 2000;21(6):208–10. Epub 2000/06/06.
  • Jurdak N, Kanarek RB. Sucrose-induced obesity impairs novel object recognition learning in young rats. Physiol Behav 2009;96(1):1–5. Epub 2008/08/23.
  • Martins A, Schimidt HL, Garcia A, Colletta Altermann CD, Santos FW, Carpes FP, et al. Supplementation with different teas from Camellia sinensis prevents memory deficits and hippocampus oxidative stress in ischemia-reperfusion. Neurochem Int 2017;108:287–295. Epub 2017/05/04.
  • Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 2001;58(9):1395–402. Epub 2001/09/18.
  • Mungas D, Jagust WJ, Reed BR, Kramer JH, Weiner MW, Schuff N, et al. MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer’s disease. Neurology 2001;57(12):2229–35. Epub 2002/01/05.
  • Walsh TJ, Emerich DF. The hippocampus as a common target of neurotoxic agents. Toxicology 1988;49(1):137–40. Epub 1988/04/01.
  • Hallliwell B, Gutteridge JMC. Lipid peroxidation: a radical chain reaction. In: Hallliwell B, Gutteridge JMC, (eds.) Free radicals in biology and medicine. Oxford: Claredon Press; 1989. p. 188–276.
  • Carillon J, Romain C, Bardy G, Fouret G, Feillet-Coudray C, Gaillet S, et al. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: improvement by dietary supplementation with a melon superoxide dismutase. Free Radical Biol Med 2013;65:254–61. Epub 2013/06/25.
  • da Silveira CK, Furini CR, Benetti F, Monteiro Sda C, Izquierdo I. The role of histamine receptors in the consolidation of object recognition memory. Neurobiol Learn Mem 2013;103:64–71. Epub 2013/04/16.
  • Mandel S, Youdim MB. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radical Biol Med 2004;37(3):304–17. Epub 2004/06/30.
  • Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MB. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 2006;50(2):229–34. Epub 2006/02/14.
  • Stefanello N, Schmatz R, Pereira LB, Rubin MA, da Rocha JB, Facco G, et al. Effects of chlorogenic acid, caffeine, and coffee on behavioral and biochemical parameters of diabetic rats. Mol Cell Biochem 2014;388(1–2):277–86. Epub 2013/12/29.
  • Kandinov B, Giladi N, Korczyn AD. Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord 2009;15(1):41–6. Epub 2008/04/25.
  • Kim TI, Lee YK, Park SG, Choi IS, Ban JO, Park HK, et al. l-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways. Free Radical Biol Med 2009;47(11):1601–10. Epub 2009/09/22.
  • Mandel SA, Amit T, Weinreb O, Reznichenko L, Youdim MB. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther 2008;14(4):352–65. Epub 2008/12/02.
  • Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT. Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS ONE 2010;5(8):e11951. Epub 2010/08/12.
  • Weinreb O, Amit T, Mandel S, Youdim MB. Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr 2009;4(4):283–96. Epub 2009/09/17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.