Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 1
351
Views
5
CrossRef citations to date
0
Altmetric
Articles

Changes of hippocampus proteomic profiles after blueberry extracts supplementation in APP/PS1 transgenic mice

, , , , &

References

  • Bennett DA. Part I. Epidemiology and public health impact of Alzheimer’s disease. Dis Mon 2000;46:657–65. doi: 10.1016/S0011-5029(00)90028-2
  • Butterfield DA. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 2002;36:1307–13. doi: 10.1080/1071576021000049890
  • Rendeiro C, Vauzour D, Kean RJ, Butler LT, Rattray M, Spencer JP, et al. Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology (Berl) 2012;223:319–30. doi: 10.1007/s00213-012-2719-8
  • Malar DS, Devi KP. Dietary polyphenols for treatment of Alzheimer’s disease – future research and development. Curr Pharm Biotechnol 2014;15:330–42. doi: 10.2174/1389201015666140813122703
  • Vauzour D. Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer’s disease pathophysiology. J Sci Food Agric 2014;94:1042–56. doi: 10.1002/jsfa.6473
  • Papandreou MA, Dimakopoulou A, Linardaki ZI, Cordopatis P, Klimis-Zacas D, Margarity M, et al. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res 2009;198:352–8. doi: 10.1016/j.bbr.2008.11.013
  • Williams CM, El MM, Vauzour D, Rendeiro C, Butler LT, Ellis JA, et al. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 2008;45:295–305. doi: 10.1016/j.freeradbiomed.2008.04.008
  • Williams RJ, Spencer JP. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012;52:35–45. doi: 10.1016/j.freeradbiomed.2011.09.010
  • Williams CM, El MM, Vauzour D, Rendeiro C, Butler LT, Ellis JA, et al. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 2008;45:295–305. doi: 10.1016/j.freeradbiomed.2008.04.008
  • Miller MG, Hamilton DA, Joseph JA, Shukitt-Hale B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur J Nutr 2018;57:1169–1180. doi: 10.1007/s00394-017-1400-8
  • Bowtell JL, Aboo-Bakkar Z, Conway ME, Adlam AR, Fulford J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab 2017;42:773–9. doi: 10.1139/apnm-2016-0550
  • Boespflug EL, Eliassen JC, Dudley JA, Shidler MD, Kalt W, Summer SS, et al. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr Neurosci 2018;21:297–305. doi: 10.1080/1028415X.2017.1287833
  • Balk E, Chung M, Raman G, Tatsioni A, Chew P, Ip S, et al. B vitamins and berries and age-related neurodegenerative disorders. Evid Rep Technol Assess (Full Rep) 2006;134: 1–161.
  • Spencer JP. The impact of fruit flavonoids on memory and cognition. Br J Nutr 2010;104 Suppl 3:S40–7. doi: 10.1017/S0007114510003934
  • Spencer JP, Vauzour D, Rendeiro C. Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects. Arch Biochem Biophys 2009;492:1–9. doi: 10.1016/j.abb.2009.10.003
  • Tan L, Yang H, Pang W, Li H, Liu W, Sun S, et al. Investigation on the role of BDNF in the benefits of blueberry extracts for the improvement of learning and memory in Alzheimer’s disease mouse model. J Alzheimers Dis 2017;56:629–40. doi: 10.3233/JAD-151108
  • Liu XY, Yang JL, Chen LJ, Zhang Y, Yang ML, Wu YY, et al. Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 2008;8:582–603. doi: 10.1002/pmic.200700514
  • Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Analytical Biochemistry 1992;203:173. doi: 10.1016/0003-2697(92)90061-B
  • Solanki I, Parihar P, Mansuri ML, Parihar MS. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 2015;6:64–72. doi: 10.3945/an.114.007500
  • Kim J, Lee HJ, Lee KW. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 2010;112:1415–30. doi: 10.1111/j.1471-4159.2009.06562.x
  • Guedj F, Sebrie C, Rivals I, Ledru A, Paly E, Bizot JC, et al. Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS One 2009;4:e4606. doi: 10.1371/journal.pone.0004606
  • Clark SG, Shurland DL, Meyerowitz EM, Bargmann CI, van der Bliek AM. A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc Natl Acad Sci U S A 1997;94:10438–43. doi: 10.1073/pnas.94.19.10438
  • Damke H, Baba T, Warnock DE, Schmid SL. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 1994;127:915–34. doi: 10.1083/jcb.127.4.915
  • Masliah E, Mallory M, Hansen L, DeTeresa R, Alford M, Terry R. Synaptic and neuritic alterations during the progression of Alzheimer’s disease. Neurosci Lett 1994;174:67–72. doi: 10.1016/0304-3940(94)90121-X
  • Hamos JE, DeGennaro LJ, Drachman DA. Synaptic loss in Alzheimer’s disease and other dementias. Neurology 1989;39:355–61. doi: 10.1212/WNL.39.3.355
  • Tiraboschi P, Hansen LA, Alford M, Masliah E, Thal LJ, Corey-Bloom J. The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology 2000;55:1278–83. doi: 10.1212/WNL.55.9.1278
  • Kelly BL, Vassar R, Ferreira A. Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. J Biol Chem 2005;280:31746–53. doi: 10.1074/jbc.M503259200
  • Ciavardelli D, Silvestri E, Viscovo AD, Bomba M, Gregorio DD, Moreno M, et al. Alterations of brain and cerebellar proteomes linked to Aβ and tau pathology in a female triple-transgenic murine model of Alzheimer’s disease. Cell Death Dis 2010;1:e90. doi: 10.1038/cddis.2010.68
  • VanGuilder HD, Farley JA, Yan H, Van Kirk CA, Mitschelen M, Sonntag WE, et al. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 2011;43:201–12. doi: 10.1016/j.nbd.2011.03.012
  • Xia D, Esser L, Tang WK, Zhou F, Zhou Y, Yu L, et al. Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. Biochim Biophys Acta 2013;1827:1278–94. doi: 10.1016/j.bbabio.2012.11.008
  • Valla J, Schneider L, Niedzielko T, Coon KD, Caselli R, Sabbagh MN, et al. Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion 2006;6:323–30. doi: 10.1016/j.mito.2006.10.004
  • Zhong S, Wu K, Black IB, Schaar DG. Characterization of the genomic structure of the mouse APLP1 gene. Genomics 1996;32:159–62. doi: 10.1006/geno.1996.0096
  • Johnson G, Refolo LM, Wallace W. Heat-shocked neuronal PC12 cells reveal Alzheimer’s disease--associated alterations in amyloid precursor protein and tau. Ann N Y Acad Sci 1993;695:194. doi: 10.1111/j.1749-6632.1993.tb23051.x
  • Abe K, St GP, Tanzi RE, Kogure K. Induction of amyloid precursor protein mRNA after heat shock in cultured human lymphoblastoid cells. Neurosci Lett 1991;125:169–71. doi: 10.1016/0304-3940(91)90019-P
  • Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A 2000;97:7841–6. doi: 10.1073/pnas.140202897
  • Kouchi Z, Sorimachi H, Suzuki K, Ishiura S. Proteasome inhibitors induce the association of Alzheimer’s amyloid precursor protein with Hsc73. Biochem Biophys Res Commun 1999;254:804–10. doi: 10.1006/bbrc.1998.9977
  • Yoo BC, Kim SH, Cairns N, Fountoulakis M, Lubec G. Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 2001;280:249–58. doi: 10.1006/bbrc.2000.4109
  • Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 2002;82:562–71. doi: 10.1046/j.1471-4159.2002.01103.x
  • Cheever TR, Ervasti JM. Actin isoforms in neuronal development and function. Int Rev Cell Mol Biol 2013;301:157–213. doi: 10.1016/B978-0-12-407704-1.00004-X
  • Russo C, Venezia V, Salis S, Dolcini V, Schettini G. Molecular aspects of neurodegeneration in Alzheimer’s disease. Funct Neurol 2002;17:65.
  • Boyd-Kimball D, Castegna A, Sultana R, et al. Proteomic identification of proteins oxidized by Aβ(1–42) in synaptosomes: implications for Alzheimer’s disease. Brain Res 2005;1044:206–15. doi: 10.1016/j.brainres.2005.02.086
  • Boyd-Kimball D, Poon HF, Lynn BC, Cai J, Pierce WJ, Klein JB, et al. Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Abeta(1-42): implications for Alzheimer’s disease. Neurobiol Aging 2006;27:1239–49. doi: 10.1016/j.neurobiolaging.2005.07.001
  • Reed TT, Pierce WM, Markesbery WR, Butterfield DA. Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res 2009;1274:66–76. doi: 10.1016/j.brainres.2009.04.009
  • Lima JE, Takayanagui OM, Garcia LV, Leite JP. Use of neuron-specific enolase for assessing the severity and outcome in patients with neurological disorders. Braz J Med Biol Res 2004;37:19–26. doi: 10.1590/S0100-879X2004000100003
  • Robinson RAS, Lange MB, Sultana R, Galvan V, Fombonne J, Gorostiza O, et al. Differential expression and redox proteomics analyses of an Alzheimer disease transgenic mouse model: effects of the amyloid-β peptide of APP. Neuroscience 2011;177:207. doi: 10.1016/j.neuroscience.2011.01.005
  • Schonberger SJ, Edgar PF, Kydd R, Faull RL, Cooper GJ. Proteomic analysis of the brain in Alzheimer’s disease: molecular phenotype of a complex disease process. Proteomics 2001;1:1519–28. doi: 10.1002/1615-9861(200111)1:12<1519::AID-PROT1519>3.0.CO;2-L
  • Sultana R, Butterfield DA. Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimers Dis 2010;19:341–53. doi: 10.3233/JAD-2010-1222
  • Nicolet CM, Craig EA. Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol Cell Biol 1989;9:3638–46. doi: 10.1128/MCB.9.9.3638
  • Odunuga OO, Longshaw VM, Blatch GL. Hop: more than an Hsp70/Hsp90 adaptor protein. Bioessays 2004;26:1058–68. doi: 10.1002/bies.20107
  • Johnson BD, Schumacher RJ, Ross ED, Toft DO. Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 1998;273:3679–86. doi: 10.1074/jbc.273.6.3679
  • Longshaw VM, Chapple JP, Balda MS, Cheetham ME, Blatch GL. Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases. J Cell Sci 2004;117:701–10. doi: 10.1242/jcs.00905
  • Beraldo FH, Soares IN, Goncalves DF, Fan J, Thomas AA, Santos TG, et al. Stress-inducible phosphoprotein 1 has unique cochaperone activity during development and regulates cellular response to ischemia via the prion protein. FASEB J 2013;27:3594–607. doi: 10.1096/fj.13-232280
  • Gupta RS. Evolution of the chaperonin families (Hsp60, Hsp10 and TCP-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 1995;15:1–11. doi: 10.1111/j.1365-2958.1995.tb02216.x
  • Chen X, Sullivan DS, Huffaker TC. Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci U S A 1994;91:9111–5. doi: 10.1073/pnas.91.19.9111
  • Ursic D, Sedbrook JC, Himmel KL, Culbertson MR. The essential yeast Tcp1 protein affects actin and microtubules. Mol Biol Cell 1994;5:1065–80. doi: 10.1091/mbc.5.10.1065
  • Brown CR, Doxsey SJ, Hong-Brown LQ, Martin RL, Welch WJ. Molecular chaperones and the centrosome. A role for TCP-1 in microtubule nucleation. J Biol Chem 1996;271:824–32. doi: 10.1074/jbc.271.2.824
  • Yoo BC, Kim SH, Cairns N, Fountoulakis M, Lubec G. Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 2001;280:249–58. doi: 10.1006/bbrc.2000.4109
  • Schuller E, Gulesserian T, Seidl R, Cairns N, Lube G. Brain t-complex polypeptide 1 (TCP- 1) related to its natural substrate beta1 tubulin is decreased in Alzheimer’s disease. Life Sci 2001;69:263–70. doi: 10.1016/S0024-3205(01)01126-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.