Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 4
353
Views
17
CrossRef citations to date
0
Altmetric
Articles

Brain Nrf2 pathway, autophagy, and synaptic function proteins are modulated by a short-term fructose feeding in young and adult rats

, ORCID Icon, , , , & ORCID Icon show all

References

  • McCrory MA, Shaw AC, Lee JA. Energy and nutrient timing for weight control. Endocrinol Metab Clin N Am. 2016;45(3):689–718. doi: 10.1016/j.ecl.2016.04.017
  • Carlson JA, Crespo NC, Sallis JF, Patterson RE, Elder JP. Dietary related and physical activity-related predictors of obesity in children: a 2-year prospective study. Child Obes. 2012;8(2):110–5. doi: 10.1089/chi.2011.0071
  • Rippe JM, Angelopoulos TJ. Relationship between added sugars consumption and chronic disease risk factors: current understanding. Nutrients. 2016;8:697. doi: 10.3390/nu8110697
  • Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 2010;121:1356–64. doi: 10.1161/CIRCULATIONAHA.109.876185
  • Crescenzo R, Bianco F, Coppola P, Mazzoli A, Cigliano L, Liverini G, et al. Increased skeletal muscle mitochondrial efficiency in rats with fructose-induced alteration in glucose tolerance. Br J Nutr. 2013;110(11):1996–2003 doi: 10.1017/S0007114513001566
  • Aragno M, Mastrocola R. Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease. Nutrients 2017;9:385–400. doi: 10.3390/nu9040385
  • Hsu TM, Konanur VR, Taing L, Usui R, Kayser BD, Goran MI, et al. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 2015;25:227–39. doi: 10.1002/hipo.22368
  • Mastrocola R, Nigro D, Cento AS, Chiazza F, Collino M, Aragno M. High-fructose intake as risk factor for neurodegeneration: Key role for carboxymethyllysine accumulation in mice hippocampal neurons. Neurobiol Dis. 2016;89:65–75. doi: 10.1016/j.nbd.2016.02.005
  • Cigliano L, Spagnuolo MS, Crescenzo R, Cancelliere R, Iannotta L, Mazzoli A, et al. Short-Term fructose feeding induces inflammation and oxidative stress in the hippocampus of young and adult rats. Mol Neurobiol. 2018;55:2869–83. doi: 10.1007/s12035-017-0518-2
  • Yin Q, Ma Y, Hong Y, Hou X, Chen J, Shen C, et al. Lycopene attenuates insulin signaling deficits, oxidative stress, neuroinflammation, and cognitive impairment in fructose-drinking insulin resistant rats. Neuropharmacol. 2014;86:389–96. doi: 10.1016/j.neuropharm.2014.07.020
  • Van der Borght K, Köhnke R, Göransson N, Deierborg T, Brundin P, Erlanson-Albertsson C, et al. Reduced neurogenesis in the rat hippocampus following high fructose consumption. Regul Pept. 2011;167:26–30. doi: 10.1016/j.regpep.2010.11.002
  • Li JM, Ge CX, Xu MX, Wang W, Yu R, Fan CY, et al. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats. Mol Nutr Food Res. 2015;59:189–202. doi: 10.1002/mnfr.201400307
  • Jiménez-Maldonado A, Ying Z, Byun HR, Gomez-Pinilla F. Short-term fructose ingestion affects the brain independently from establishment of metabolic syndrome. Biochim Biophys Acta. 2018;1864(1):24–33. doi: 10.1016/j.bbadis.2017.10.012
  • Ford CN, Slining MM, Popkin BM. Trends in dietary intake among US 2- to 6-year-old children, 1989-2008. J Acad Nutr Diet. 2013;113:35–42. doi: 10.1016/j.jand.2012.08.022
  • Robbins TW. From arousal to cognition: the integrative position of the prefrontal cortex. Prog Brain Res. 2000;126:469–83. doi: 10.1016/S0079-6123(00)26030-5
  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2:861–3. doi: 10.1038/13158
  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101: 8174–79. doi: 10.1073/pnas.0402680101
  • O’Donnell P. Adolescent onset of cortical disinhibition in schizophrenia: insights from animal models. Schizophr Bull. 2011;37:484–92. doi: 10.1093/schbul/sbr028
  • Manitt C, Eng C, Pokinko M, Ryan RT, Torres-Berrío A, Lopez JP, et al. Dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Transl Psychiatry. 2013;3:e338. doi: 10.1038/tp.2013.105
  • Morin JP, Rodríguez-Durán LF, Guzmán-Ramos K, Perez-Cruz C, Ferreira G, Diaz-Cintra S, et al. Palatable hyper-caloric foods impact on neuronal plasticity. Front Behav Neurosci. 2017;11:19. doi: 10.3389/fnbeh.2017.00019
  • Reichelt AC. Adolescent maturational transitions in the prefrontal cortex and dopamine signaling as a risk factor for the development of obesity and high Fat/high sugar diet induced cognitive deficits. Front Behav Neurosci. 2016;10:189. doi: 10.3389/fnbeh.2016.00189
  • Reichelt AC, Killcross S, Hambly LD, Morris MJ, Westbrook RF. Impact of adolescent sucrose access on cognitive control, recognition memory, and parvalbumin immunoreactivity. Learn Mem. 2015;22:215–24. doi: 10.1101/lm.038000.114
  • Johnson DA, Johnson JA. Nrf2 – a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med. 2015;88(Pt B):253–67. doi: 10.1016/j.freeradbiomed.2015.07.147
  • Deplanque D. Cell protection through PPAR nuclear receptor activation. Therapie 2004;59:25–29. doi: 10.2515/therapie:2004006
  • Rinwa P, Kaur B, Jaggi AS, Singh N. Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia. Naunyn-Schmied Arch Pharmacol. 2010;381:529–39. doi: 10.1007/s00210-010-0511-z
  • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011;147:728–41. doi: 10.1016/j.cell.2011.10.026
  • Chen L, Miao Y, Chen L, Jin P, Zha Y, Chai Y, et al. The role of elevated autophagy on the synaptic plasticity impairment caused by CdSe/ZnS quantum dots. Biomaterials 2013;34:10172–81. doi: 10.1016/j.biomaterials.2013.09.048
  • Zhang H, Shang Y, Xiao X, Yu M, Zhang T. Prenatal stress-induced impairments of cognitive flexibility and bidirectional synaptic plasticity are possibly associated with autophagy in adolescent male-offspring. Exp Neurol. 2017;298(Pt A):68–78. doi: 10.1016/j.expneurol.2017.09.001
  • Pope CN, Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol. 2018; 153:205–16. doi: 10.1016/j.bcp.2018.01.044
  • Janeczek M, Gefen T, Samimi M, Kim G, Weintraub S, Bigio E, et al. Variations in acetylcholinesterase activity within human cortical pyramidal neurons across Age and cognitive trajectories. Cereb Cortex. 2018;28(4):1329–37. doi: 10.1093/cercor/bhx047
  • Spijker S. Dissection of rodent brain regions. In: Li KW, (ed.) Neuroproteomics. New York: Springer Science + Business Media LLC; 2011. p. 13–26.
  • Chiu K, Lau WM, Lau HT, So KF, Chang RC. Micro-dissection of rat brain for RNA or protein extraction from specific brain region. J Vis Exp. 2007;7:269.
  • Paxinos G, Watson C. The Rat brain in stereotaxic coordinates. 3th ed. San Diego: Academic Press; 1997.
  • Swanson L. Brain maps: structure of the rat brain. 3rd ed. Amsterdam: Elsevier; 2004.
  • Papp EA, Leergaarda TB, Calabrese E, Johnson GA, Bjaalie JG. 2014. Waxholm space atlas of the Sprague Dawley rat brain. NeuroImage 2014;97:374–86. doi: 10.1016/j.neuroimage.2014.04.001
  • Spagnuolo MS, Mollica MP, Maresca B, Cavaliere G, Cefaliello C, Trinchese G, et al. High Fat diet and inflammation – modulation of haptoglobin level in rat brain. Front Cell Neurosci. 2015;9:479. doi: 10.3389/fncel.2015.00479
  • Zvonic S, Hogan JC, Arbour-Reily P, Mynatt RL, Stephens JM. Effects of cardiotrophin on adipocytes. J Biol Chem. 2004;279:47572–9. doi: 10.1074/jbc.M403998200
  • Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2007;1:3159–65. doi: 10.1038/nprot.2006.378
  • Monaco A, Ferrandino I, Boscaino F, Cocca E, Cigliano L, Maurano F, et al. Conjugated linoleic acid prevents age-dependent neurodegeneration in a mouse model of neuropsychiatric lupus via the activation of an adaptive response. J Lipid Res. 2018;59:48–5. doi: 10.1194/jlr.M079400
  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9
  • Spagnuolo MS, Donizetti A, Iannotta L, Aliperti V, Cupidi C, Bruni AC, et al. Brain-derived neurotrophic factor modulates cholesterol homeostasis and Apolipoprotein E synthesis in human cell models of astrocytes and neurons. J Cell Physiol. 2018;233(9):6925–43. doi: 10.1002/jcp.26480
  • Spagnuolo MS, Maresca B, Mollica MP, Cavaliere G, Cefaliello C, Trinchese G, et al. Haptoglobin increases with age in rat hippocampus and modulates Apolipoprotein E mediated cholesterol trafficking in neuroblastoma cell lines. Front Cell Neurosci. 2014;8:212. eCollection 2014. doi: 10.3389/fncel.2014.00212
  • Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005;115:2679–88. doi: 10.1172/JCI26390
  • Leal G, Afonso PM, Salazara IL, Duarte CB. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. 2015;1621:82–101. doi: 10.1016/j.brainres.2014.10.019
  • Croll SD, Ip NY, Lindsay RM, Wiegand SJ. Expression of BDNF and trkB as a function of age and cognitive performance. Brain Res. 1998;812(1–2):200–8. doi: 10.1016/S0006-8993(98)00993-7
  • Silhol M, Arancibia S, Maurice T, Tapia-Arancibia L. Spatial memory training modifies the expression of brain-derived neurotrophic factor tyrosine kinase receptors in young and aged rats. Neuroscience 2007;146:962–73. doi: 10.1016/j.neuroscience.2007.02.013
  • Moreno S, Farioli-Vecchioli S, Cerù MP. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 2004;123:131–45. doi: 10.1016/j.neuroscience.2003.08.064
  • Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al. Omega 3 polyunsaturated fatty acid improves spatial learning and hippocampal peroxisome proliferator activated receptors (PPARα and PPARγ) gene expression in rats. BMC Neurosci. 2012;13:109. doi: 10.1186/1471-2202-13-109
  • Nagai Y, Nishio Y, Nakamura T, Maegawa H, Kikkawa R, Kashiwagi A. Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am J Physiol Endocrinol Metab. 2002;282:E1180–90. doi: 10.1152/ajpendo.00471.2001
  • Roglans N, Vila L, Farre M, Alegret M, Sanchez RM, Vazquez-Carrera M et al. Impairment of hepatic stat-3 activation and reduction of PPARalpha activity in fructose-fed rats. Hepatology 2007;45:778–88. doi: 10.1002/hep.21499
  • Su Q, Baker C, Christian P, Naples M, Tong X, Zhang K, et al. Hepatic mitochondrial and ER stress induced by defective PPARα signaling in the pathogenesis of hepatic steatosis. Am J Physiol Endocrinol Metab 2014;306:E1264–73. doi: 10.1152/ajpendo.00438.2013
  • Qin L, Wang Z, Tao L, Wang Y. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 2010;6(2):239–47. doi: 10.4161/auto.6.2.11062
  • Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol 2004;36:2376–91. doi: 10.1016/j.biocel.2004.05.003
  • Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LM. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol. 2011;50:1035–43. doi: 10.1016/j.yjmcc.2011.03.002
  • De Stefanis D, Mastrocola R, Nigro D, Costelli P, Aragno M. Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle. Eur J Nutr 2017;56:363–73. doi: 10.1007/s00394-015-1086-8
  • Maiztegui B, Boggio V, Román CL, Flores LE, Zotto HD, Ropolo A, et al. VMP1-related autophagy induced by a fructose-rich diet in β-cells: its prevention by incretins. Clin Sci 2017;131:673–87. doi: 10.1042/CS20170010
  • Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol 2012;123:53e70. doi: 10.1007/s00401-011-0896-x
  • Janz R, Südhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 1999;24:687–700. doi: 10.1016/S0896-6273(00)81122-8
  • Cesca F, Baldelli P, Valtorta F, Benfenati F. The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 2010;91:313–48. doi: 10.1016/j.pneurobio.2010.04.006
  • Bacaj T, Wu D, Yang X, Morishita W, Zhou P, Xu W, et al. Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 2013;80:947–59. doi: 10.1016/j.neuron.2013.10.026
  • Mundigl O, Verderio C, Krazewski K, De Camilli P, Matteoli M. A radioimmunoassay to monitor synaptic activity in hippocampal neurons in vitro. Eur J Cell Biol 1995;66:246–56.
  • Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 2005;192:348–56. doi: 10.1016/j.expneurol.2004.11.016
  • Yoshii A, Constantine-Paton M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat Neurosci 2007;10:702–711. doi: 10.1038/nn1903
  • Molteni R, Barnard RJ, Ying Z, Roberts CK, Gómez-Pinilla F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 2002;112:803–14. doi: 10.1016/S0306-4522(02)00123-9
  • Wu A, Ying Z, Gomez-Pinilla F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 2004;19:1699–707. doi: 10.1111/j.1460-9568.2004.03246.x
  • Calvo-Ochoa E, Hernandez-Ortega K, Ferrera P, Morimoto S, Arias C. Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. J Cereb Blood Flow Metab 2014;34:1001–8. doi: 10.1038/jcbfm.2014.48
  • Liu WC, Wu CW, Tain YL, Fu MH, Hung CY, Chen IC, et al. Oral pioglitazone ameliorates fructose-induced peripheral insulin resistance and hippocampal gliosis but not restores inhibited hippocampal adult neurogenesis. Biochim Biophys Acta 2018;1864(1):274–85. doi: 10.1016/j.bbadis.2017.10.017
  • Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, et al. High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol 2006;13:1385–88. doi: 10.1111/j.1468-1331.2006.01500.x
  • Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, et al. Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 2008;18:1085–88. doi: 10.1002/hipo.20470
  • Moreira EL, de Oliveira J, Engel DF, Walz R, de Bem AF, Farina M, Prediger RD. Hypercholesterolemia induces short-term spatial memory impairments in mice: up-regulation of acetylcholinesterase activity as an early and causal event? J Neural Transm 2014;121(4):415–26. doi: 10.1007/s00702-013-1107-9
  • Jangra A, Kasbe P, Pandey SN, Dwivedi S, Gurjar SS, Kwatra M, et al. Hesperidin and silibinin ameliorate aluminum-induced neurotoxicity: modulation of antioxidants and inflammatory cytokines level in mice hippocampus. Biol Trace Elem Res 2015;168:462–71. doi: 10.1007/s12011-015-0375-7
  • Hosny EN, Sawie HG, Elhadidy ME, Khadrawy YA. Evaluation of antioxidant and anti-inflammatory efficacy of caffeine in rat model of neurotoxicity. Nutr Neurosci. 2018;7:1–8. doi:10.1080/1028415X.2018.1446812.
  • Nawaz A, Batool Z, Shazad S, Rafiq S, Afzal A, Haider S. Physical enrichment enhances memory function by regulating stress hormone and brain acetylcholinesterase activity in rats exposed to restraint stress. Life Sci. 2018;207:42–49. doi: 10.1016/j.lfs.2018.05.049
  • Searl TJ, Silinsky EM. Modulation of calcium-dependent and -independent acetylcholine release from motor nerve endings. J Mol Neurosci 2006;30(1–2):215–8. doi: 10.1385/JMN:30:1:215

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.