Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 6
728
Views
14
CrossRef citations to date
0
Altmetric
Articles

Cocoa beans improve mitochondrial biogenesis via PPARγ/PGC1α dependent signalling pathway in MPP+ intoxicated human neuroblastoma cells (SH-SY5Y)Footnote

, , , , , , , , & show all

References

  • Nehlig A. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br J Clin Pharmacol 2013;75:716–27. doi: 10.1111/j.1365-2125.2012.04378.x
  • García-Blanco T, Dávalos A, Visioli F. Tea, cocoa, coffee, and affective disorders: vicious or virtuous cycle? J Affect Disord 2017;224:61–8. doi: 10.1016/j.jad.2016.11.033
  • Cimini A, Gentile R, D’Angelo B, Benedetti E, Cristiano L, Avantaggiati ML, et al. Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J Cell Biochem 2013;114:2209–20. doi: 10.1002/jcb.24548
  • Łuszczki JJ, Włodarczyk M, Gleńsk M, Marzęda E, Durmowicz D, Florek-Łuszczki M. Effects of alizarin, betulin, curcumin, diosmin, linalool, menthofuran, α-terpineol, theobromine, β-thujaplicin and vanillin against maximal electroshock-induced seizures in mice. JPCCR 2013;7:40–2. doi: 10.26444/jpccr/71433
  • Messaoudi M, Bisson JF, Nejdi A, Rozan P, Javelot H. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar–Unilever rats. Nutr Neurosci 2008;11: 269–76. doi: 10.1179/147683008X344165
  • Shah ZA, Li R, Ahmad AS, Kensler TW, Yamamoto M, Biswal S. The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 2010;30:1951–61. doi: 10.1038/jcbfm.2010.53
  • Spencer JPE. Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 2009;4:243–50. doi: 10.1007/s12263-009-0136-3
  • Cimrová B, Budáč S, Melicherová U, Jergelova M, Jagla F. Electrophysiological evidence of the effect of natural polyphenols upon the human higher brain functions. Neuro Endocrinol Lett 2011;32:464–68.
  • Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev 2012;12:81–90. doi: 10.4103/0973-7847.99898
  • Lakey-Beitia J, Berrocal R, Rao KS, Durant AA. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol Neurobiol 2015;51:466–79. doi: 10.1007/s12035-014-8722-9
  • Witte AV, Kerti L, Margulies DS, Flöel A. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 2014;34:7862–70. doi: 10.1523/JNEUROSCI.0385-14.2014
  • Andrade PB, Grosso C, Valentao P, Bernardo J. Flavonoids in neurodegeneration: limitations and strategies to cross CNS barriers. Curr Med Chem 2016;23:4151–74. doi: 10.2174/0929867323666160809094934
  • Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, et al. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 2004;134:613–17. doi: 10.1093/jn/134.3.613
  • Rimbach G, Melchin M, Moehring J, Wagner AE. Polyphenols from cocoa and vascular health—A critical review. Int J Mol Sci 2009;10:4290–309. doi: 10.3390/ijms10104290
  • Singh NA, Mandal AKA, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2015;15:1204. doi: 10.1186/s12937-016-0179-4
  • Whiting DA. Natural phenolic compounds 1900–2000: a bird’s eye view of a century’s chemistry. Nat Prod Rep 2001;18:583–606. doi: 10.1039/b003686m
  • Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, et al. Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 2002;33:1693–702. doi: 10.1016/S0891-5849(02)01137-1
  • Figueira I, Garcia G, Pimpão RC, Terrasso AP, Costa I, Almeida AF, et al. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep 2017;7:S159. doi: 10.1038/s41598-017-00184-x
  • Rendeiro C, Rhodes JS, Spencer JPE. The mechanisms of action of flavonoids in the brain: direct versus indirect effects. Neurochem Int 2015;89:126–39. doi: 10.1016/j.neuint.2015.08.002
  • Giacometti J, PavletiÄ A, MuhviÄ D, ÃudariÄ L. Cocoa polyphenols exhibit antioxidant, anti-inflammatory, anticancerogenic, and anti-necrotic activity in carbon tetrachloride-intoxicated mice. J Funct Foods 2016;23:177–87. doi: 10.1016/j.jff.2016.02.036
  • Sathiya S, Ranju V, Kalaivani P, Priya RJ, Sumathy H, Sunil AG, et al. Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of α-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6J mice. Neuropharmacology 2013;73:98–110. doi: 10.1016/j.neuropharm.2013.05.025
  • Tsang AHK, Chung KKK. Oxidative and nitrosative stress in Parkinson’s disease. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 2009;1792:643–50. doi: 10.1016/j.bbadis.2008.12.006
  • Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003;302:819–22. doi: 10.1126/science.1087753
  • Luo Y, Hoffer A, Hoffer B, Qi X. Mitochondria: A therapeutic target for Parkinson’s disease? Int J Mol Sci 2015;16:20704–30. doi: 10.3390/ijms160920704
  • Thomas RR, Keeney PM, Bennett JP. Impaired complex-I mitochondrial biogenesis in Parkinson disease frontal cortex. J Parkinsons Dis 2012;2:67–76. doi: 10.3233/JPD-2012-11074
  • Pyle A, Anugrha H, Kurzawa-Akanbi M, Yarnall A, Burn D, Hudson G. Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease. Neurobiol Aging 2016;38:216.e7–216.e10. doi: 10.1016/j.neurobiolaging.2015.10.033
  • Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M, Hultenby K, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 2004;13:935–44. doi: 10.1093/hmg/ddh109
  • Taherzadeh-Fard E, Saft C, Akkad DA, Wieczorek S, Haghikia A, Chan A, et al. PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener 2011;6:32. doi: 10.1186/1750-1326-6-32
  • Giordano C, Iommarini L, Giordano L, Maresca A, Pisano A, Valentino ML, et al. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy. Brain 2014;137:335–53. doi: 10.1093/brain/awt343
  • Rehman H, Krishnasamy Y, Haque K, Thurman RG, Lemasters JJ, Schnellmann RG, et al. Green Tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin A treatment in rats. PLOS ONE 2013;8:1–12.
  • Santos LFS, Stolfo A, Calloni C, Salvador M. Catechin and epicatechin reduce mitochondrial dysfunction and oxidative stress induced by amiodarone in human lung fibroblasts. J Arrhythm 2017;33:220–25. doi: 10.1016/j.joa.2016.09.004
  • Corona JC, Duchen MR. PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochem Res 2015;40:308–16. doi: 10.1007/s11064-014-1377-0
  • Nagore DH, Ghosh VK, Patil MJ, Wahile AM. Validated HPTLC method for quantification of epicatechin in extracts of leaves of cassia fistula Linn. Acta Chromatographica 2010;22:259–65. doi: 10.1556/AChrom.22.2010.2.8
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4
  • Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 1984;21:130–32.
  • Martin HL, Mounsey RB, Mustafa S, Sathe K, Teismann P. Pharmacological manipulation of peroxisome proliferator-activated receptor γ (PPARγ) reveals a role for anti-oxidant protection in a model of Parkinson’s disease. Exp Neurol 2012;235:528–38. doi: 10.1016/j.expneurol.2012.02.017
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–85. doi: 10.1038/227680a0
  • Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochimica et Biophysica Acta (BBA) – Bioenergetics 2008;1777:860–66. doi: 10.1016/j.bbabio.2008.05.442
  • Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem 2010;47:69–84. doi: 10.1042/bse0470069
  • Xie M, Doetsch PW, Deng X. Bcl2 inhibition of mitochondrial DNA repair. BMC Cancer 2015;15:507. doi: 10.1186/s12885-015-1594-1
  • Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 1964;239:2910–17.
  • Zigmond RE, Schwarzschild MA, Rittenhouse AR. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters Via phosphorylation. Annu Rev Neurosci 1989;12:415–61. doi: 10.1146/annurev.ne.12.030189.002215
  • Detmer SA, Chan DC. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol 2007;176:405–14. doi: 10.1083/jcb.200611080
  • Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013;32:4814–24. doi: 10.1038/onc.2012.494
  • Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta 2014;1842:1282–94. doi: 10.1016/j.bbadis.2013.09.007
  • Kim-Han JS, Antenor-Dorsey JA, O’Malley KL. The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J Neurosci 2011;31:7212–21. doi: 10.1523/JNEUROSCI.0711-11.2011
  • Nicotra A, Parvez S. Apoptotic molecules and MPTP-induced cell death. Neurotoxicol Teratol 2002;24:599–605. doi: 10.1016/S0892-0362(02)00213-1
  • Cassarino DS, Parks JK, Parker WD, Bennett JP. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease 1999;1453:49–62. doi: 10.1016/S0925-4439(98)00083-0
  • Hondares E, Mora O, Yubero P, Rodriguez de la Concepción M, Iglesias R, Giralt M, et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology 2006;147:2829–38. doi: 10.1210/en.2006-0070
  • Jovanovic SV, Simic MG. Antioxidants in nutrition. Ann N Y Acad Sci 2000;899:326–34. doi: 10.1111/j.1749-6632.2000.tb06197.x
  • Galleano M, Verstraeten SV, Oteiza PI, Fraga CG. Antioxidant actions of flavonoids: thermodynamic and kinetic analysis. Arch Biochem Biophys 2010;501:23–30. doi: 10.1016/j.abb.2010.04.005
  • Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 2013:5:a011072.
  • Berthet A, Margolis EB, Zhang J, Hsieh I, Zhang J, Hnasko TS, et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci 2014;34:14304–17. doi: 10.1523/JNEUROSCI.0930-14.2014
  • Pham AH, Meng S, Chu QN, Chan DC. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum Mol Genet 2012;21:4817–26. doi: 10.1093/hmg/dds311
  • Zhao F, Wang W, Wang C, Siedlak SL, Fujioka H, Tang B, et al. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: implications for idiopathic Parkinson’s disease. Biochim Biophys Acta 2017;1863:1359–70. doi: 10.1016/j.bbadis.2017.02.016
  • Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Gräber S, et al., Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 2006;25:3900–11. doi: 10.1038/sj.emboj.7601253
  • James DI, Parone PA, Mattenberger Y, Martinou JC. Hfis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 2003;278:36373–79. doi: 10.1074/jbc.M303758200
  • Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in Rat liver. J Biol Chem 2001;276:38388–93. doi: 10.1074/jbc.M105395200
  • Fukui M, Zhu BT. Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical role in protection against glutamate-induced oxidative stress and cell death in HT22 neuronal cells. Free Radic Biol Med 2010;48:821–30. doi: 10.1016/j.freeradbiomed.2009.12.024
  • Miriyala S, Holley A, St Clair DK. Mitochondrial superoxide dismutase – signals of distinction. Anti-Cancer Agents in Medicinal Chemistry- Anti-Cancer Agents 2011;11:181–90. doi: 10.2174/187152011795255920
  • Vauzour D. Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects. Oxid Med Cell Longevity 2012;2012:16 pages. doi: 10.1155/2012/914273
  • Kim HS, Quon MJ, Kim J. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2014;2:187–95. doi: 10.1016/j.redox.2013.12.022
  • Bhullar KS, Rupasinghe HPV. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxid Med Cell Longevity 2013;2013:18 pages. doi: 10.1155/2013/891748
  • Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des Devel Ther 2016;10:23–42.
  • Wang Y, Zhao W, Li G, Chen J, Guan X, Chen X, Guan Z. Neuroprotective effect and mechanism of thiazolidinedione on dopaminergic neurons In vivo and In vitro in Parkinson’s disease. PPAR Res 2017;2017:4089214.
  • Azam F, Mohamed N, Alhussen F. Molecular interaction studies of green tea catechins as multitarget drug candidates for the treatment of Parkinson’s disease: computational and structural insights. Netw Comput Neural Syst 2015;26:97–115. doi: 10.3109/0954898X.2016.1146416

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.