Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 9
262
Views
7
CrossRef citations to date
0
Altmetric
Articles

Stigmasterol promotes neuronal migration via reelin signaling in neurosphere migration assays

& ORCID Icon

References

  • Lui JH, Hansen DV, Kriegstein AR development and evolution of the human neocortex. Cell 2011;146:18–36. doi: 10.1016/j.cell.2011.06.030
  • Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012;135:1348–69. doi: 10.1093/brain/aws019
  • Bicas J, Pastore GM, Maróstica MR. Phytosterols: biological effects and mechanisms of hypocholesterolemic action. In: Maria GT, Anthonia OD, (eds.) Biotechnology of bioactive compounds: sources and applications, Chichester: John Wiley & Sons, Ltd; 2015. p. 565–81.
  • Vanmierlo T, Weingärtner O, van der Pol S, Husche C, Kerksiek A, Friedrichs S, et al. Dietary intake of plant sterols stably increases plant sterol levels in the murine brain. J Lipid Res 2012;53:726–35. doi: 10.1194/jlr.M017244
  • Park SJ, Kim DH, Jung JM, Kim JM, Cai M, Liu X, et al. The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur J Pharmacol 2012;676:64–70. doi: 10.1016/j.ejphar.2011.11.050
  • Burg VK, Grimm HS, Rothhaar TL, Grosgen S, Hundsdorfer B, Haupenthal VJ, et al. Plant sterols the better cholesterol in Alzheimer's disease? A mechanistical study. J Neurosci 2013;33:16072–87. doi: 10.1523/JNEUROSCI.1506-13.2013
  • Gade S, Rajamanikyam M, Vadlapudi V, Nukala KM, Aluvala R, Giddigari C, et al. Acetylcholinesterase inhibitory activity of stigmasterol and hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochim Biophys Acta 2017;1861:541–50. doi: 10.1016/j.bbagen.2016.11.044
  • Haque MN, Bhuiyan MMH, Moon IS. Stigmasterol activates Cdc42-Arp2 and Erk1/2-Creb pathways to enrich glutamatergic synapses in cultures of brain neurons. Nutr Res 2018b;56:71–78.
  • Haque MN, Moon IS. Stigmasterol upregulates immediate early genes and promotes neuronal cytoarchitecture in primary hippocampal neurons as revealed by transcriptome analysis. Phytomedicine 2018;46:164–75. doi: 10.1016/j.phymed.2018.04.012
  • Niu S, Renfro A, Quattrocchi CC, Sheldon M, D'Arcangelo G. Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 2004;41:71–84. doi: 10.1016/S0896-6273(03)00819-5
  • Niu S, Yabut O, D'Arcangelo G. The reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci 2008;28:10339–48. doi: 10.1523/JNEUROSCI.1917-08.2008
  • Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, et al. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 2002;277:39944–52. doi: 10.1074/jbc.M205147200
  • D'Arcangelo G. ApoER2: a reelin receptor to remember. Neuron 2005;47:471–3. doi: 10.1016/j.neuron.2005.08.001
  • Sekine K, Kubo K, Nakajima K. How does reelin control neuronal migration and layer formation in the developing mammalian neocortex? Neurosci Res 2014;86:50–58. doi: 10.1016/j.neures.2014.06.004
  • Youn YH, Pramparo T, Hirotsune S, Wynshaw-Boris A. Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci 2009;29:15520–30. doi: 10.1523/JNEUROSCI.4630-09.2009
  • Bix GJ, Clark GD. Platelet-activating factor receptor stimulation disrupts neuronal migration in vitro. J Neurosci 1998;18:307–18. doi: 10.1523/JNEUROSCI.18-01-00307.1998
  • Moon IS, Cho SJ, Jin I, Walikonis R. A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol Cells 2007;24:76–82.
  • Yao M, Nguyen TVV, Pike CJ. β-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 2005;25:1149–58. doi: 10.1523/JNEUROSCI.4736-04.2005
  • Ippolito DM, Eroglu C. Quantifying synapses: an immunocytochemistry-based assay to quantify synapse number. J Vis Exp 2010;45:2270.
  • Sholl DA. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 1953;87:387–406.
  • Yasui N, Nogi T, Takagi J. Structural basis for specific recognition of reelin by its receptors. Structure 2010;18:320–31. doi: 10.1016/j.str.2010.01.010
  • Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 1996;9:1–5. doi: 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  • Jossin Y. Neuronal migration and the role of reelin during early development of the cerebral cortex. Mol Neurobiol. 2004;30:225-51. doi: 10.1385/MN:30:3:225
  • Deng Y, Roux B. Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B 2009;113:2234–46. doi: 10.1021/jp807701h
  • Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 1996;16:2649–58. doi: 10.1523/JNEUROSCI.16-08-02649.1996
  • Huynh-Do U, Vindis C, Liu H, Cerretti DP, McGrew JT, Enriquez M, et al. Ephrin-B1 transduces signals to activate integrin-mediated migration, attachment and angiogenesis. J Cell Sci 2002;115:3073–81.
  • Zhang L, Wang W, Hayashi Y, Jester JV, Birk DE, Gao M, et al. A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure. EMBO J 2003;22:4443–54. doi: 10.1093/emboj/cdg440
  • Podkowa M, Zhao X, Chow CW, Coffey ET, Davis RJ, Attisano L. Microtubule stabilization by bone morphogenetic protein receptor-mediated scaffolding of c-Jun N-terminal kinase promotes dendrite formation. Mol Cell Biol 2010;30:2241–50. doi: 10.1128/MCB.01166-09
  • Stockinger W, Brandes C, Fasching D, Hermann M, Gotthardt M, Herz, J, et al. The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and-2. J Biol Chem 2000;275:25625–32. doi: 10.1074/jbc.M004119200
  • Zeke A, Misheva M, Reményi A, Bogoyevitch MA. JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev 2016;80:793–835. doi: 10.1128/MMBR.00043-14
  • Jin J, Suzuki H, Hirai S, Mikoshiba K, Ohshima T. JNK phosphorylates Ser332 of doublecortin and regulates its function in neurite extension and neuronal migration. Dev Neurobiol 2010;70:929–42. doi: 10.1002/dneu.20833
  • Ayala R, Shu T, Tsai LH. Trekking across the brain: the journey of neuronal migration. Cell 2007;128:29–43. doi: 10.1016/j.cell.2006.12.021
  • Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB. A developmental and genetic classification for malformations of cortical development. Neurology 2005;65:1873–87. doi: 10.1212/01.wnl.0000183747.05269.2d
  • Schliwa M, Euteneuer U, Gräf R, Ueda M. Centrosomes, microtubules and cell migration. Biochem Soc Symp 1999;65:223-31.
  • Higginbotham HR, Gleeson JG. The centrosome in neuronal development. Trends Neurosci 2007;30:276–83. doi: 10.1016/j.tins.2007.04.001
  • Hirota Y, Nakajima K. Control of neuronal migration and aggregation by reelin signaling in the developing cerebral cortex. Front Cell Dev Biol 2017;5:40. doi: 10.3389/fcell.2017.00040
  • D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T. Reelin is a ligand for lipoprotein receptors. Neuron 1999;24:471–9. doi: 10.1016/S0896-6273(00)80860-0
  • Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., et al. Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 1999;24:481–9. doi: 10.1016/S0896-6273(00)80861-2
  • Tanaka T, Serneo FF, Higgins C, Gambello MJ, Wynshaw-Boris A, Gleeson JG. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol 2004;165:709–21. doi: 10.1083/jcb.200309025
  • Reiner O. LIS1 and DCX: implications for brain development and human disease in relation to microtubules. Scientifica (Cairo) 2013;2013:393975.
  • Kriegstein A, Parnavelas JG. Progress in corticogenesis. Cereb Cortex 2006;16:i1–i2. doi: 10.1093/cercor/bhk041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.