Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 10
1,197
Views
14
CrossRef citations to date
0
Altmetric
Reviews

New approach to peripheral nerve injury: nutritional therapy

, ORCID Icon &

References

  • Lee S, Notterpek L. Dietary restriction supports peripheral nerve health by enhancing endogenous protein quality control mechanisms. Exp Gerontol. 2013;48(10):1085–90.
  • Suzuki K, Tanaka H, Ebara M, Uto K, Matsuoka H, Nishimoto S, et al. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model. Acta Biomater. 2017;53:250–9.
  • Bekar E, Altunkaynak BZ, Balcı K, Aslan G, Ayyıldız M, Kaplan S. Effects of high fat diet induced obesity on peripheral nerve regeneration and levels of GAP 43 and TGF-beta in rats. Biotech Histochem. 2014;89(6):446–56.
  • Navarro X. Neural plasticity after nerve injury and regeneration. Int Rev Neurobiol. 2009;87:483–505.
  • Galán-Arriero I, Serrano-Muñoz D, Gómez-Soriano J, Goicoechea C, Taylor J, Velasco A, Ávila-Martín G. The role of omega-3 and omega-9 fatty acids for the treatment of neuropathic pain after neurotrauma. Biochim Biophys Acta (BBA)-Biomembr. 2017;1859(9):1629–35.
  • Siemionow M, Brzezicki G. Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol. 2009;87:141–72.
  • Rodrigues MC, Rodrigues AA, Glover LE, Voltarelli J, Borlongan CV. Peripheral nerve repair with cultured Schwann cells: getting closer to the clinics. Sci World J. 2012;413091:1–10.
  • Chang YM, Chang HH, Tsai CC, Lin HJ, Ho TJ, Ye CX, et al. Alpinia oxyphylla Miq. fruit extract activates IGFR-PI3 K/Akt signaling to induce Schwann cell proliferation and sciatic nerve regeneration. BMC Complement Alternat Med. 2017;17(184):1–10.
  • Navarro X. Neural plasticity after nerve injury and regeneration. Int Rev Neurobiol. 2009;87:483–505.
  • Yarim G, Kazak F. Beyin Kaynaklı nörotrofik Faktör. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 2015;10(2):120–129.
  • Lopes CDF, Gonçalves NP, Gomes CP, Saraiva MJ, Pêgo AP. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials. 2017;121:83–96.
  • Kobayashi H, Yokoyama M, Matsuoka Y, Omori M, Itano Y, Kaku R. Expression changes of multiple brain-derived neurotrophic factor transcripts in selective spinal nerve ligation model and complete Freund's adjuvant model. Brain Res. 2008;1206:13–19.
  • Bastani A, Rajabi S, Kianimarkani F. The effects of fasting during Ramadan on the concentration of serotonin, dopamine, brain-derived neurotrophic factor and nerve growth factor. Neurol Int. 2017;9(2):29–33.
  • Wang C, Bomberg E, Billington CJ, Levine AS, Kotz CM. Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure. Brain Res. 2010 June 8;1336:66–77.
  • Liu X, Zhu Z, Kalyani M, Janik JM, Shi H. Effects of energy status and diet on BDNF expression in the ventromedial hypothalamus of male and female rats. Physiol Behav. 2014;130:99–107.
  • Arija V, Ferrer-Barcala M, Aranda N. Canals JBDNF Val66Met polymorphism, energy intake and BMI: a follow-up study in schoolchildren at risk of eating disorders. BMC Public Health. 2010;10:363–363.
  • Mattson MP. Energy intake, meal frequency, and health: a neurobiological perspective. Annu Rev Nutr. 2005;25:237–60.
  • Araya AV, Orellana X, Espinoza J. Evaluation of the effect of caloric restriction on serum BDNF in overweight and obese subjects: preliminary evidences. Endocrine. 2008;33(3):300–4.
  • Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev. 2006;5(3):332–53.
  • Rangaraju S, Hankins D, Madorsky I, Madorsky E, Lee WH, Carter CS. Molecular architecture of myelinated peripheral nerves is supported by calorie restriction with aging. Aging Cell. 2009;8(2):178–91.
  • Cermenati G, Mitro N, Audano M, Melcangi RC, Crestani M, De Fabiani E. Lipids in the nervous system: from biochemistry and molecular biology to patho-physiology. Biochim. Biophys Acta (BBA) – Mol Cell Biol Lipids. 2015. 1851(1): 51–60.
  • Dyall S, Michael-Titus A. Neurological benefits of omega-3 fatty acids. Neuromol Med. 2008;10(4):219–35.
  • Riediger ND, Othman RA, Suh M, Moghadasian MH. A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc. 2009;109(4):668–79.
  • Simopoulos AP. Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet, in healthy agriculture, healthy nutrition, healthy people. World Rev Nutr Diet. 2011;102:10–21.
  • Gladman SJ, Huang W, Lim SN, Dyall SC, Boddy S, Kang JX, et al. Improved outcome after peripheral nerve injury in mice with increased levels of endogenous omega-3 polyunsaturated fatty acids. J Neurosci. 2012;32(2):563–71.
  • King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci. 2006;26(17):4672–80.
  • Liśkiewicz A, Właszczuk A, Gendosz D, Larysz-Brysz M, Kapustka B, Łączyński M, et al. Sciatic nerve regeneration in rats subjected to ketogenic diet. Nutr Neurosci. 2016;19(3):116–24.
  • Streijger F, Plunet WT, Lee JHT, Liu J, Lam CK, et al. Ketogenic diet Improves Forelimb motor function after spinal cord injury in Rodents. PLoS ONE. 2013;8(11):e78765:1–19.
  • Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 2009;59(2):293–315.
  • Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci. 2015;8(35):1–27.
  • John T, Brosnan MEB. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006;136(1):207S–11S.
  • Juurlink BH, Paterson PG. Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med. 1998;21(4):309–34. doi:10.1080/10790268.1998.11719540.
  • Wang ZB, Gan Q, Rupert RL, Zeng YM, Song XJ. Thiamine, pyridoxine, cyanocobalamin and their combination inhibit thermal, but not mechanical hyperalgesia in rats with primary sensory neuron injury. Pain. 2005;114:266–77.
  • Caram-Salas NL, Reyes-Garcia GG, Medina-Santillán R, Granados-Soto V. Thiamine and cyanocobalamin relieve neuropathic pain in rats: synergy with dexamethasone. Pharmacology. 2006;77(2):53–62.
  • Yu CZ, Liu YP, Liu S, Yan M, Hu SJ, Song XJ. Systematic administration of B vitamins attenuates neuropathic hyperalgesia and reduces spinal neuron injury following temporary spinal cord ischaemia in rats. Eur J Pain. 2014;18:76–85.
  • Kaneda K, Kikuchi M, Kashii S, Honda Y, Maeda T, Kaneko S. Effects of B vitamins on glutamate-induced neurotoxicity in retinal cultures. Eur J Pharmacol. 1997;322(2–3):259–64.
  • Hung KL, Wang CC, Huang CY, Wang SJ. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes). Eur J Pharmacol. 2009;602:230–7.
  • Sun H, Yang T, Li Q, Zhu Z, Wang L, Bai G, et al. Experimental research dexamethasone and vitamin B12 synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. Arch Med Sci. 2012;8(5):924–30.
  • Morra M, Philipszoon HD, D'Andrea G, Cananzi AR, L'Erario R, Milone FF. Sensory and motor neuropathy caused by excessive ingestion of vitamin(B6). A case report. Funct Neurol. 1993;8(6):429–32.
  • Levin ER, Hanscom TA, Fisher M, Lauvstad WA, Lui A, Ryan A, Glockner D, Seymour R. Levin the influence of pyridoxinein diabetic peripheral neuropathy. Diabet Care. 1981;4(6).
  • Bernstein AL. Vitamin B6 in clinical neurology. Ann N Y Acad Sci. 1990;585:250–60.
  • Awuah E, Field MF, Stover P. Effects of disrupted serine hydroxymethyltransferase 1 (Shmt1) gene expression on motor function and myelin degeneration in vitamin B12 deficient mice. Nutrition. 2015;29(1): Abstract Number:919.23.
  • Liao WC, Wang YJ, Huang MC, Tseng GF. Methylcobalamin facilitates collateral sprouting of donor axons and innervation of recipient muscle in end-to-side neurorrhaphy in rat. PLoS One. 2013;8(e76302):1–14.
  • Dominguez JC, Arlene RG, Damian LF. A prospective, open label, 24-week trial of methylcobalamin in the treatment of diabetic polyneuropathy. J Diabet Mellit. 2012;2:408–12.
  • Nedeljković P, Dacić S, Kovačević M, Peković S, Vučević D, Božić-Nedeljković B. Vitamin B Complex as a Potential Therapeutıcal Modalıty In Combatıng Perıpheral Nerve Injury. Avta Medica. 2018;57(2):85–91.
  • Okada K, Tanaka H, Temporin K, Okamoto M, Kuroda Y, Moritomo H, et al. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol. 2010;222(2):191–203.
  • Altun I, Belge Kurutaş E. Vitamin B complex and vitamin B12 levels after peripheral nerve injury. Neural Regen Res. 2016;11(5):842–5.
  • Akyıldız EÜ, Sav AM. Myelin hastalıkları. Türkiye Ekopatoloji Dergisi. 2004;10(1–2):43–8.
  • Suzuki K, Tanaka H, Ebara M, Uto K, Matsuoka H, Nishimoto S, et al. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model. Acta Biomater. 2017;53:250–9.
  • Nava-Ocampo AA, Pastrak A, Cruz T, Koren G. Pharmacokinetics of high doses of cyanocobalamin administered by intravenous injection for 26 weeks in rats. Clin Exp Pharmacol Physiol. 2005;32(1–2):13–8.
  • Alfarra HY, Alfarra SR, Sadiq MF. Neural tube defects between folate metabolism and genetics. Indian J Hum Genet. 2011;17(3):126–31.
  • Walker JG, Batterham PJ, Mackinnon AJ, Jorm AF, Hickie I, Fenech M, et al. Oral folic acid and vitamin B-12 supplementation to prevent cognitive decline in community-dwelling older adults with depressive symptoms—the Beyond Ageing Project: a randomized controlled trial. Am J Clin Nutr. 2011;95(1):194–203.
  • Iskandar BJ, Nelson A, Resnick D, Skene JH, Gao P, Johnson C, et al. Folic acid supplementation enhances repair of the adult central nervous system. Ann Neurol. 2004;56:221–7.
  • Chen X, Gua C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012; 7(5):376–385.
  • Huang EP. Metal ions and synaptic transmission: think zinc. Proc Natl Acad Sci. 1997;94(25):13386–7.
  • Cathy W, Levenson DM. Zinc and neurogenesis: making new neurons from development to adulthood. Adv Nutr. 2011:2(1):96–100.
  • Nourbakhsh M, Ahmadpour F, Chahardoli B, Malekpour-Dehkordi Z, Nourbakhsh M, Hosseini-Fard SR, et al. Selenium and its relationship with selenoprotein P and glutathione peroxidase in children and adolescents with Hashimoto’s thyroiditis and hypothyroidism. J Trace Elem Med Biol. 2016;34:10–4.
  • Szwajgier D, Borowiec K, Pustelniak K. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients 2017;9(5):477.
  • Khalatbary AR. Natural polyphenols and spinal cord injury. Iran Biomed J 2014;18(3):120.
  • Noorafshan A, Omidi A, Karbalay-Doust S. Curcumin protects the dorsal root ganglion and sciatic nerve after crush in rat. Pathol – Res Pract. 2011;207(9):577–82.
  • Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199–225.
  • Zhao L, Cui S. Curcumin improves sciatic nerve regeneration by up-regulating S100 expression in mice. Biomed Res. 2016;27(2):322–7.
  • Ding Z, Cao J, Shen Y, Zou Y, Yang X, Zhou W, et al. Resveratrol promotes nerve regeneration via activation of p300 acetyltransferase-mediated VEGF signaling in a rat model of sciatic nerve crush injury. Front Neurosci. 2018;12(341):1–13.
  • Guaiquil VH, Pan Z, Karagianni N, Fukuoka S, Alegre G, et al. Rosenblatt MI VEGF-B selectively regenerates injured peripheral neurons and restores sensory and trophic functions. Proc Natl Acad Sci. 2014;111(48):17272–7.
  • Yin Q, Lu FF, Zhao Y, Cheng MY, Fan Q, Cui J, et al. Resveratrol facilitates pain attenuation in a rat model of neuropathic pain through the activation of spinal Sirt1. Reg Anesth Pain Med. 2013;38(2):93–9.
  • Elbaz AA, Abu-Almaaty AH, Hassan MK, Mohammed EA, Aziz MM. Therapeutic role of Schwann cells and resveratrol or melatonin combination in peripheral nerve injured rat models. JEAAS. 2017;2(2):190–210.
  • Xifró X, Vidal-Sancho L, Boadas-Vaello P, Turrado C, Alberch J, Puig T, et al. Novel epigallocatechin-3-gallate (EGCG) derivative as a new therapeutic strategy for reducing neuropathic pain after chronic constriction nerve injury in mice. PloS one. 2015;10(4):e0123122.
  • Kian K, Khalatbary AR, Ahmadvand H, Malekshah AK, Shams Z. Neuroprotective effects of (−)-epigallocatechin-3-gallate (EGCG) against peripheral nerve transection-induced apoptosis. Nutr Neurosci. 2017:1–9. doi:10.1080/1028415X.2017.1419542.
  • Renno WM, Al-Maghrebi M, Alshammari A, George P. (−)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem Int. 2013;62(3):221–31.
  • Ju DT, Liao HE, Shibu MA, Ho TJ, Padma VV, Tsai FJ, et al. Nerve regeneration potential of protocatechuic acid in RSC96 Schwann cells by induction of cellular proliferation and migration through IGFR-PI3K-Akt signaling. Chin J Physiol. 2015;58(6):412–9. doi:10.4077/CJP.2015.BAD340.
  • Guan S, Bao YM, Jiang B, An LJ. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Eur J Pharmacol. 2006;539(1–3):73–9.
  • Mukherjee M, Bhaskaran N, Srinath R, Shivaprasad HN, Allan JJ, Shekhar D, Agarwal A. Anti-ulcer and antioxidant activity of GutGardTM. Indian J Exp Biol. 2010;48:269–74.
  • Ju DT, Kuo WW, Ho TJ, Paul CR, Kuo CH, Viswanadha VP, et al. Protocatechuic acid from alpinia oxyphylla induces Schwann cell migration via ERK1/2. JNK and p38, activation. Am J Chin Med. 2015;43(4):653–65. doi:10.1142/S0192415X15500408.
  • Lee WY, Orestes P, Latham J, Naik AK, Nelson MT, Vitko I, et al. Molecular mechanisms of lipoic acid modulation of T-type calcium channels in pain pathway. J Neurosci. 2009;29(30):9500–9.
  • Zhao M, Chen JY, Chu YD, Zhu YB, Luo L, Bu SZ. Efficacy of epalrestat plus α-lipoic acid combination therapy versus monotherapy in patients with diabetic peripheral neuropathy: a meta-analysis of 20 randomized controlled trials. Neural Regen Res. 2018;13(6):1087.
  • Arikan M, Togral G, Hasturk AE, Horasanli B, Helvacioglu F, Dagdeviren A, et al. Histomorphometric and ultrastructural evaluation of long-term alpha lipoic acid and vitamin B12 use after experimental sciatic nerve injury in rats. Turk Neurosurg. 2016;26(6):944–52.
  • Senoglu M, Nacitarhan V, Kurutas EB, Senoglu N, Altun I, Atli Y, Ozbag D. Intraperitoneal alpha-lipoic acid to prevent neural damage after crush injury to the rat sciatic nerve. J Brach Plexus Peripheral Nerve Injury. 2009;4(1):22.
  • Ganio MS, Armstrong LE, Kavouras SA. Hydration. In: Casa D, editors. Sport and physical activity in the heat. Springer, Cham. 2018;83–100.
  • Alper RH, Demarest KT, Moore KE. Dehydration selectively increases dopamine synthesis in tuberohypophyseal dopaminergic neurons. Neuroendocrinology. 1980;31(2):112–5.
  • Horswill CA, Janas LM. Hydration and health. Am J Lifestyle Med. 2011;5(4):304–315.
  • CM Hueston, Cryan JF, Nolan YM. Stress and adolescent hippocampal neurogenesis: diet and.exercise as cognitive modulators. Transl Psychiatry. 2017;7:1081. doi:10.1038/tp.2017.48.
  • Desbonnet L, Clarke G, Traplin A, O'Sullivan O, Crispie F, Moloney RD, et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun. 2015;48:165–73.
  • Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10:735–42.
  • Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.
  • Kigerl KA, Mostacada K, Popovich PG. Gut microbiota Are disease-Modifying factors after Traumatic spinal cord injury. Neurotherapeutics. 2018;15:60–7.
  • Kigerl KA, et al. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med. 2016;213(12):2603–20.
  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.
  • Krych L, Hansen CHF, Hansen AK, van den Berg FWJ, Nielsen DS. Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS ONE. 2013;8:e62578.
  • Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 2015;16:71–84.
  • Uchida H, Sasaki K, Ma L, Ueda H. Neuron-restrictive silencer factor causes epigenetic silencing of Kv4.3 gene after peripheral nerve injury. Neuroscience. 2010;166(1):1–4.
  • Uchida H, Matsushita Y, Ueda H. Epigenetic regulation of BDNF expression in the primary sensory neurons after peripheral nerve injury: Implications in the development of neuropathic pain. Neuroscience. 2013;240:147–54.
  • Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci. 2015;38(4):237–46.
  • Kiguchi N, Kobayashi Y, Saika F, Kishioka S. Epigenetic upregulation of CCL2 and CCL3 via histone modifications in infiltrating macrophages after peripheral nerve injury. Cytokine. 2013;64(3):666–72.
  • Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci. 2015;38(4):237–46.
  • Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y. Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radical Biol Med. 2008;45(11):1542–50.
  • Khatri D, Laroche G, Grant ML, Jones VM, Vetreno RP, Crews FT, et al. Acute ethanol inhibition of adult hippocampal neurogenesis involves CB1 cannabinoid receptor signaling. Alcohol Clin Exp Res. 2018;42(4):718–26. doi:10.1111/acer.13608.
  • Hanninen O. Regulation of food intake. In: Hanninen O, Atalay M, editors. Physiology and maintenance. 1st ed. Oxford: EOLSS Publishers. 2009. p. 144–62.
  • Rateb EE, Amin SN, El-Tablawy N, Rashed LA, El-Attar S. Effect of melatonin supplemented at the light or dark period on recovery of sciatic nerve injury in rats. EXCLI J. 2017;16:138–50.
  • Kaya Y, Sarikcioglu L, Belgin Yildirim F, Aslan M, Demir N. Does circadian rhythm disruption induced by light-at-night has beneficial effect of melatonin on sciatic nerve injury? J Chem Neuroanat. 2013;53:18–24.
  • Kandermir YB, Sarikcioglu L. Melatonin and its therapeutic actions on peripheral nerve regeneration. Folia Morphol. 2015;74(3):283–9.
  • Milde J, Elstner EF, Graßmann J. Synergistic effects of phenolics and carotenoids on human low-density lipoprotein oxidation. Mol Nutr. 2007;51(8):956–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.