Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 12
389
Views
7
CrossRef citations to date
0
Altmetric
Articles

A blend containing docosahexaenoic acid, arachidonic acid, vitamin B12, vitamin B9, iron and sphingomyelin promotes myelination in an in vitro model

ORCID Icon, , ORCID Icon, &

References

  • Fernstrom JD. Can nutrient supplements modify brain function? Am J Clin Nutr. 2000;71(6 Suppl):1669S–75S.
  • Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614S–20S.
  • Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014;72(4):267–84.
  • Hodgkin AL. The ionic basis of nervous conduction. Science. 1964;145(3637):1148–54.
  • Stampfli R. Saltatory conduction in nerve. Physiol Rev. 1954;34(1):101–12.
  • Purger D, Gibson EM, Monje M. Myelin plasticity in the central nervous system. Neuropharmacology. 2016;110(Pt B):563–73.
  • Deoni S, et al. Early nutrition influences developmental myelination and cognition in infants and young children. Neuroimage. 2018;178:649–59.
  • Kessaris N, et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci. 2006;9(2):173–79.
  • Jahn O, Tenzer S, Werner HB. Myelin proteomics: molecular anatomy of an insulating sheath. Mol Neurobiol. 2009;40(1):55–72.
  • Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev. 2001;81(2):871–927.
  • Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem. 2007;100(6):1431–48.
  • Simons M, Nave KA. Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol. 2016;8(1):a020479.
  • Aggarwal S, et al. Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork. PLoS Biol. 2013;11(6):e1001577.
  • Gibson EM, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science. 2014;344(6183):1252304.
  • Nickel M, Gu C. Regulation of central nervous system myelination in higher brain functions. Neural Plast. 2018;2018:6436453.
  • Carlson SE, Colombo J. Docosahexaenoic acid and Arachidonic acid nutrition in early development. Adv Pediatr. 2016;63(1):453–71.
  • Hadley KB, et al. The Essentiality of Arachidonic acid in infant development. Nutrients. 2016;8(4):216.
  • Weiser MJ, Butt CM, Mohajeri MH. Docosahexaenoic acid and cognition throughout the lifespan. Nutrients. 2016;8(2):99.
  • Brenna JT, Diau GY. The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition. Prostaglandins Leukot Essent Fatty Acids. 2007;77(5-6):247–50.
  • Haubner L, et al. The effects of maternal dietary docosahexaenoic acid intake on rat pup myelin and the auditory startle response. Dev Neurosci. 2007;29(6):460–67.
  • Hofmann K, et al. Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci USA. 2000;97(11):5895–900.
  • Venkatramanan S, et al. Vitamin B-12 and Cognition in Children. Adv Nutr. 2016;7(5):879–88.
  • Finkelstein JL, Layden AJ, Stover PJ. Vitamin B-12 and Perinatal Health. Adv Nutr. 2015;6(5):552–63.
  • Lovblad K, et al. Retardation of myelination due to dietary vitamin B12 deficiency: cranial MRI findings. Pediatr Radiol. 1997;27(2):155–58.
  • Black MM. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull. 2008;29(2 Suppl):S126–31.
  • Dallman PR, Siimes MA, Manies EC. Brain iron: persistent deficiency following short-term iron deprivation in the young rat. Br J Haematol. 1975;31(2):209–15.
  • Georgieff MK. Iron assessment to protect the developing brain. Am J Clin Nutr. 2017;106(Suppl 6):1588S–1593S.
  • Todorich B, et al. Oligodendrocytes and myelination: the role of iron. Glia. 2009;57(5):467–78.
  • Oshida K, et al. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatr Res. 2003;53(4):589–93.
  • Charles P, et al. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci USA. 2000;97(13):7585–90.
  • Mandal R, et al. Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med. 2012;4(4):38.
  • Smach MA, et al. Folate and homocysteine in the cerebrospinal fluid of patients with Alzheimer's disease or dementia: a case control study. Eur Neurol. 2011;65(5):270–78.
  • Taguchi H, et al. Vitamin B12 levels of cerebrospinal fluid in patients with a variety of neurological disorders. J Nutr Sci Vitaminol (Tokyo). 1977;23(4):299–304.
  • Pilitsis JG, et al. Measurement of free fatty acids in cerebrospinal fluid from patients with hemorrhagic and ischemic stroke. Brain Res. 2003;985(2):198–201.
  • Magalon K, et al. Olesoxime accelerates myelination and promotes repair in models of demyelination. Ann Neurol. 2012;71(2):213–26.
  • Czopka T, Ffrench-Constant C, Lyons DA. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev Cell. 2013;25(6):599–609.
  • Bernardo A, et al. Docosahexaenoic acid promotes oligodendrocyte differentiation via PPAR-gamma signalling and prevents tumor necrosis factor-alpha-dependent maturational arrest. Biochim Biophys Acta. 2017;1862(9):1013–23.
  • Tai EK, Wang XB, Chen ZY. An update on adding docosahexaenoic acid (DHA) and arachidonic acid (AA) to baby formula. Food Funct. 2013;4(12):1767–75.
  • Domenichiello AF, Kitson AP, Bazinet RP. Is docosahexaenoic acid synthesis from alpha-linolenic acid sufficient to supply the adult brain? Prog Lipid Res. 2015;59:54–66.
  • Duncan RE, Bazinet RP. Brain arachidonic acid uptake and turnover: implications for signaling and bipolar disorder. Curr Opin Clin Nutr Metab Care. 2010;13(2):130–38.
  • Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy–a review. Nutrients. 2016;8(2):68.
  • Zhang Y, et al. Decreased brain levels of vitamin B12 in aging, Autism and Schizophrenia. PLoS One. 2016;11(1):e0146797.
  • Kim J, Gherasim C, Banerjee R. Decyanation of vitamin B12 by a trafficking chaperone. Proc Natl Acad Sci USA. 2008;105(38):14551–54.
  • Gherasim C, Lofgren M, Banerjee R. Navigating the B(12) road: assimilation, delivery, and disorders of cobalamin. J Biol Chem. 2013;288(19):13186–93.
  • MacFarland B, et al. Sphingomyelin content in breast milk and infant formula: a nutrient that may affect neurodevelopment. Adv Nutr. 2017;8(1):17–17.
  • Nyberg L, et al. Localization and capacity of sphingomyelin digestion in the rat intestinal tract. J Nutr Biochem. 1997;8(3):112–18.
  • Ohlsson L, et al. Sphingolipids in human ileostomy content after meals containing milk sphingomyelin. Am J Clin Nutr. 2010;91(3):672–78.
  • Nilsson A, Duan RD. Absorption and lipoprotein transport of sphingomyelin. J Lipid Res. 2006;47(1):154–71.
  • Bentejac M, et al. Turnover and uptake of double-labelled high-density lipoprotein sphingomyelin in the adult rat. Biochimica et Biophysica Acta. 1988;959(3):349–60.
  • Bentejac M, et al. Utilization of high-density lipoprotein sphingomyelin by the developing and mature brain in the Rat. Journal of Neurochemistry. 1989;52(5):1495–500.
  • Shashiraj XX, et al. Mother's iron status, breastmilk iron and lactoferrin–are they related? Eur J Clin Nutr. 2006;60(7):903–08.
  • Andrews NC. Forging a field: the golden age of iron biology. Blood. 2008;112(2):219–30.
  • Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism. 1987;36(9):892–95.
  • Fillebeen C, et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. 1999;274(11):7011–17.
  • Benkovic SA, Connor J. Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol. 1993;338(1):97–113.
  • De los Monteros AE, et al. Transferrin gene expression and secretion by rat brain cells in vitro. J Neurosci Res. 1990;25(4):576–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.