Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 24, 2021 - Issue 2
188
Views
12
CrossRef citations to date
0
Altmetric
Articles

Preadministration of high-dose alpha-tocopherol improved memory impairment and mitochondrial dysfunction induced by proteasome inhibition in rat hippocampus

, , &

References

  • Vierstra RD. The ubiquitin–26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol. 2009;10(6):385–97. doi: 10.1038/nrm2688
  • Demasi M, Simões V, Bonatto D. Cross-talk between redox regulation and the ubiquitin–proteasome system in mammalian cell differentiation. Biochim Biophys Acta. 2015;1850(8):1594–606. doi: 10.1016/j.bbagen.2014.10.031
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95. doi: 10.1038/nature05292
  • Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205–19. doi: 10.1016/S0092-8674(04)00046-7
  • Ross JM, Olson L, Coppotelli G. Mitochondrial and ubiquitin proteasome system dysfunction in ageing and disease: two sides of the same coin? Int J Mol Sci. 2015;16(8):19458–76. doi: 10.3390/ijms160819458
  • Keller JN, Hanni KB, Markesbery WR. Impaired proteasome function in Alzheimer's disease. J Neurochem. 2000;75(1):436–39. doi: 10.1046/j.1471-4159.2000.0750436.x
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95. doi: 10.1016/j.cell.2005.02.001
  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. doi: 10.1016/j.cell.2013.05.039
  • Wang X, Wang W, Li L, Perry G, Lee H-g, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta. 2014;1842(8):1240–47. doi: 10.1016/j.bbadis.2013.10.015
  • Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008;22(11):1427–38. doi: 10.1101/gad.1657108
  • Keller JN, Hanni KB, Markesbery WR. Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev. 2000;113(1):61–70. doi: 10.1016/S0047-6374(99)00101-3
  • Maharjan S, Oku M, Tsuda M, Hoseki J, Sakai Y. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep. 2014;4:1–11.
  • Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging. 2002;23(5):719–35. doi: 10.1016/S0197-4580(02)00078-7
  • Lu Z, Nie G, Belton PS, Tang H, Zhao B. Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int. 2006;48(4):263–74. doi: 10.1016/j.neuint.2005.10.010
  • Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem. 2013;138(2):1028–33. doi: 10.1016/j.foodchem.2012.11.022
  • Meydani M. Vitamin E. Lancet. 1995;345(8943):170–5. eng. doi: 10.1016/S0140-6736(95)90172-8
  • Sung S, Yao Y, Uryu K, Yang H, Lee VM, Trojanowski JQ, et al. Early vitamin E supplementation in young but not aged mice reduces Aβ levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 2004;18(2):323–25. doi: 10.1096/fj.03-0961fje
  • Praticò D, Clark CM, Liun F, Lee VY-M, Trojanowski JQ. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol. 2002;59(6):972–76. doi: 10.1001/archneur.59.6.972
  • Mecocci P, Polidori MC. Antioxidant clinical trials in mild cognitive impairment and Alzheimer's disease. Biochim Biophys Acta. 2012;1822(5):631–38. doi: 10.1016/j.bbadis.2011.10.006
  • Eidi A, Eidi M, Mahmoodi G, Oryan S. Effect of vitamin E on memory retention in rats: possible involvement of cholinergic system. Eur Neuropsychopharmacol. 2006;16(2):101–06. doi: 10.1016/j.euroneuro.2005.06.006
  • Grundman M. Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am J Clin Nutr. 2000;71(2):630s–36s. doi: 10.1093/ajcn/71.2.630s
  • Chun J, Lee J, Ye L, Exler J, Eitenmiller RR. Tocopherol and tocotrienol contents of raw and processed fruits and vegetables in the United States diet. J Food Compos Anal. 2006;19(2):196–204. doi: 10.1016/j.jfca.2005.08.001
  • McLaughlin P, Weihrauch JL. Vitamin E content of foods. J Am Diet Assoc. 1979;75(6):647–65.
  • Dreher ML. Pistachio nuts: composition and potential health benefits. Nutr Rev. 2012;70(4):234–40. doi: 10.1111/j.1753-4887.2011.00467.x
  • Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med. 2014;72:76–90. doi: 10.1016/j.freeradbiomed.2014.03.035
  • Behl C. Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-β estradiol and induces the activity of the transcription factor NF-κB. J Neural Transm. 2000;107(4):393–407. doi: 10.1007/s007020070082
  • Saito Y, Nishio K, Akazawa YO, Yamanaka K, Miyama A, Yoshida Y, et al. Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic Biol Med. 2010;49(10):1542–49. doi: 10.1016/j.freeradbiomed.2010.08.016
  • Magalhaes J, Ascensao A, Marques F, Soares JM, Ferreira R, Neuparth MJ, et al. Effect of a high-altitude expedition to a Himalayan peak (Pumori, 7,161 m) on plasma and erythrocyte antioxidant profile. Eur J Appl Physiol. 2005;93(5-6):726–32. doi: 10.1007/s00421-004-1222-2
  • Yoshida Y, Itoh N, Hayakawa M, Habuchi Y, Saito Y, Tsukamoto Y, et al. The role of α-tocopherol in motor hypofunction with aging in α-tocopherol transfer protein knockout mice as assessed by oxidative stress biomarkers. J Nutr Biochem. 2010;21(1):66–76. doi: 10.1016/j.jnutbio.2008.10.006
  • Lebold KM, Löhr CV, Barton CL, Miller GW, Labut EM, Tanguay RL, et al. Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior. Comp Biochem Physiol C Toxicol Pharmacol. 2013;157(4):382–89. doi: 10.1016/j.cbpc.2013.03.007
  • Ulatowski LM, Manor D. Vitamin E and neurodegeneration. Neurobiol Dis. 2015;84:78–83. doi: 10.1016/j.nbd.2015.04.002
  • Reis DS, Jarome TJ, Helmstetter FJ. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex. Front Behav Neurosci. 2013;7:150. doi: 10.3389/fnbeh.2013.00150
  • dos Santos PS, Costa JP, da Rocha Tomé A, Saldanha GB, de Souza GF, Feng D, et al. Oxidative stress in rat striatum after pilocarpine-induced seizures is diminished by alpha-tocopherol. Eur J Pharmacol. 2011;668(1-2):65–71. doi: 10.1016/j.ejphar.2011.06.035
  • Ishaq GM, Saidu Y, Bilbis LS, Muhammad SA, Jinjir N, Shehu BB. Effects of α-tocopherol and ascorbic acid in the severity and management of traumatic brain injury in albino rats. J Neurosci Rural Pract. 2013;4(3):292. doi: 10.4103/0976-3147.118784
  • Lopez-Salon M, Alonso M, Vianna MR, Viola H, Souza E, Mello T, et al. The ubiquitin–proteasome cascade is required for mammalian long-term memory formation. Eur J Neurosci. 2001;14(11):1820–26. doi: 10.1046/j.0953-816x.2001.01806.x
  • Rezaei M, Rajabi Vardanjani H, Pashmforoosh M, Alipour D, Nesari A, Mansourzade Z, et al. Involvement of Spinal CB1 Cannabinoid receptors on the Antinociceptive effect of Celecoxib in rat formalin test. Jundishapur J Nat Pharm Prod. 2016;11(3):1–6. doi: 10.17795/jjnpp-33433
  • Vianna MR, Izquierdo LA, Barros DM, Ardenghi P, Pereira P, Rodrigues C, et al. Differential role of hippocampal cAMP-dependent protein kinase in short-and long-term memory. Neurochem Res. 2000;25(5):621–26. doi: 10.1023/A:1007502918282
  • Izquierdo I, Barros DM, e Souza TM, de Souza MM, Izquierdo LA, Medina JH. Mechanisms for memory types differ. Nature. 1998;393(6686):635. doi: 10.1038/31371
  • Mishima K, Egashira N, Hirosawa N, Fujii M, Matsumoto Y, Iwasaki K, et al. Characteristics of learning and memory impairment induced by Δ9-tetrahydrocannabinol in rats. Jpn J Pharmacol. 2001;87(4):297–308. doi: 10.1254/jjp.87.297
  • Ataie A, Sabetkasaei M, Haghparast A, Moghaddam AH, Ataie R, Moghaddam SN. An investigation of the neuroprotective effects of Curcumin in a model of Homocysteine-induced oxidative stress in the rat's brain. Daru J Pharmacy Sci. 2010;18(2):128.
  • Goudarzi M, Amiri S, Nesari A, Hosseinzadeh A, Mansouri E, Mehrzadi S. The possible neuroprotective effect of ellagic acid on sodium arsenate-induced neurotoxicity in rats. Life Sci. 2018;198:38–45. doi: 10.1016/j.lfs.2018.02.022
  • Liang L-P, Jarrett SG, Patel M. Chelation of mitochondrial iron prevents seizure-induced mitochondrial dysfunction and neuronal injury. J Neurosci. 2008;28(45):11550–56. doi: 10.1523/JNEUROSCI.3016-08.2008
  • Liang L-P, Patel M. Seizure-induced changes in mitochondrial redox status. Free Radic Biol Med. 2006;40(2):316–22. doi: 10.1016/j.freeradbiomed.2005.08.026
  • Mansouri SMT, Naghizadeh B, Hosseinzadeh H. The effect of Pistacia vera L. gum extract on oxidative damage during experimental cerebral ischemia-reperfusion in rats. Iran Biomed J. 2005;9(4):181–85.
  • Rahigude A, Bhutada P, Kaulaskar S, Aswar M, Otari K. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience. 2012;226:62–72. doi: 10.1016/j.neuroscience.2012.09.026
  • Dong Y, Wang Y, Liu Y, Yang N, Zuo P. Phytoestrogen-zearalanol ameliorates memory impairment and neuronal DNA oxidation in ovariectomized mice. Clinics. 2013;68(9):1255–62. doi: 10.6061/clinics/2013(09)13
  • Keshtzar E, Khodayar M, Javadipour M, Ghaffari M, Bolduc D, Rezaei M. Ellagic acid protects against arsenic toxicity in isolated rat mitochondria possibly through the maintaining of complex II. Hum Exp Toxicol. 2016;35(10):1060–72. doi: 10.1177/0960327115618247
  • Andersson B, Aw T, Jones DP. Mitochondrial transmembrane potential and pH gradient during anoxia. Am J Physiol Cell Physiol. 1987;252(4):C349–C55. doi: 10.1152/ajpcell.1987.252.4.C349
  • Goudarzi M, Kalantari H, Rezaei M. Glyoxal toxicity in isolated rat liver mitochondria. Hum Exp Toxicol. 2018;37(5):532–39. doi: 10.1177/0960327117715900
  • Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995;268:726–26. doi: 10.1126/science.7732382
  • Hegde AN, Upadhya SC. Role of ubiquitin–proteasome-mediated proteolysis in nervous system disease. Biochim Biophys Acta. 2011;1809(2):128–40. doi: 10.1016/j.bbagrm.2010.07.006
  • Thibaudeau TA, Anderson RT, Smith DM. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun. 2018;9(1):1097. doi: 10.1038/s41467-018-03509-0
  • Ling Q, Jarvis P. Functions of plastid protein import and the ubiquitin–proteasome system in plastid development. Biochim Biophys Acta. 2015;1847(9):939–48. doi: 10.1016/j.bbabio.2015.02.017
  • Romero-Granados R, Fontán-Lozano Á, Aguilar-Montilla FJ, Carrión ÁM. Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: a new model of neurodevelopment syndrome. PLoS One. 2011;6(12):e28927. doi: 10.1371/journal.pone.0028927
  • Rodriguez-Ortiz CJ, Balderas I, Saucedo-Alquicira F, Cruz-Castañeda P, Bermudez-Rattoni F. Long-term aversive taste memory requires insular and amygdala protein degradation. Neurobiol Learn Mem. 2011;95(3):311–15. doi: 10.1016/j.nlm.2010.12.010
  • Foley AG, Hartz BP, Gallagher HC, Rønn LCB, Berezin V, Bock E, et al. A synthetic peptide ligand of neural cell adhesion molecule (NCAM) IgI domain prevents NCAM internalization and disrupts passive avoidance learning. J Neurochem. 2000;74(6):2607–13. doi: 10.1046/j.1471-4159.2000.0742607.x
  • Zhu W, Xie W, Pan T, Jankovic J, Li J, Youdim MBH, Le W, et al. Comparison of neuroprotective and neurorestorative capabilities of rasagiline and selegiline against lactacystin-induced nigrostriatal dopaminergic degeneration; (1471–4159 (Electronic)). eng.
  • Artinian J, McGauran A-MT, De Jaeger X, Mouledous L, Frances B, Roullet P. Protein degradation, as with protein synthesis, is required during not only long-term spatial memory consolidation but also reconsolidation. Eur J Neurosci. 2008;27(11):3009–19. doi: 10.1111/j.1460-9568.2008.06262.x
  • Kaang B-K, Lee S-H, Kim H. Synaptic protein degradation as a mechanism in memory reorganization. Neuroscientist. 2009;15(5):430–35. doi: 10.1177/1073858408331374
  • Filosto M, Scarpelli M, Cotelli MS, Vielmi V, Todeschini A, Gregorelli V, et al. The role of mitochondria in neurodegenerative diseases. J Neurol. 2011;258(10):1763–74. doi: 10.1007/s00415-011-6104-z
  • Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci. 2012;322(1):254–62. doi: 10.1016/j.jns.2012.05.030
  • Gautier C, Corti O, Brice A. Mitochondrial dysfunctions in Parkinson's disease. Rev Neurol (Paris). 2014;170(5):339–43. doi: 10.1016/j.neurol.2013.06.003
  • Büeler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol. 2009;218(2):235–46. doi: 10.1016/j.expneurol.2009.03.006
  • Livnat-Levanon N, Glickman MH. Ubiquitin–proteasome system and mitochondria—reciprocity. Biochim Biophys Acta. 2011;1809(2):80–87. doi: 10.1016/j.bbagrm.2010.07.005
  • Figueiredo-Pereira ME, Rockwell P, Schmidt-Glenewinkel T, Serrano P. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Front Mol Neurosci. 2014;7:1–20.
  • Eytan E, Ganoth D, Armon T, Hershko A. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc Natl Acad Sci U S A. 1989;86(20):7751–55. doi: 10.1073/pnas.86.20.7751
  • Dahlmann B, Kuehn L, Reinauer H. Studies on the activation by ATP of the 26 S proteasome complex from rat skeletal muscle. Biochem J. 1995;309(1):195–202. doi: 10.1042/bj3090195
  • Kleijnen MF, Roelofs J, Park S, Hathaway NA, Glickman M, King RW, et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol. 2007;14(12):1180–8. doi: 10.1038/nsmb1335
  • Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem. 1983;258(13):8206–14. doi: 10.1016/S0021-9258(20)82050-X
  • Bakhshi J, Weinstein L, Poksay KS, Nishinaga B, Bredesen DE, Rao RV. Coupling endoplasmic reticulum stress to the cell death program in mouse melanoma cells: effect of curcumin. Apoptosis. 2008;13(7):904–14. doi: 10.1007/s10495-008-0221-x
  • Drexler HC. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors. PLoS One. 2009;4(1):e4161. doi: 10.1371/journal.pone.0004161
  • Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Dunner K, Huang P, et al. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res. 2005;65(24):11658–66. doi: 10.1158/0008-5472.CAN-05-2370
  • Maria DA, de Souza JG, Morais KL, Berra CM, de Campos Zampolli H, Demasi M, et al. A novel proteasome inhibitor acting in mitochondrial dysfunction, ER stress and ROS production. Invest New Drugs. 2013;31(3):493–505. doi: 10.1007/s10637-012-9871-1
  • Tai H-C, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol. 2012;181(4):1426–35. doi: 10.1016/j.ajpath.2012.06.033
  • Reiter E, Jiang Q, Christen S. Anti-inflammatory properties of α-and γ-tocopherol. Mol Aspects Med. 2007;28(5):668–91. doi: 10.1016/j.mam.2007.01.003
  • DuBoff B, Feany M, Götz J. Why size matters–balancing mitochondrial dynamics in Alzheimer's disease. Trends Neurosci. 2013;36(6):325–35. doi: 10.1016/j.tins.2013.03.002
  • Nash KM, Ahmed S. Nanomedicine in the ROS-mediated pathophysiology: applications and clinical advances. Nanomedicine. 2015;11(8):2033–40. doi: 10.1016/j.nano.2015.07.003
  • Montine TJ, Neely MD, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, et al. Lipid peroxidation in aging brain and Alzheimer’s disease 1, 2. Free Radic Biol Med. 2002;33(5):620–26. doi: 10.1016/S0891-5849(02)00807-9
  • Marnett LJ. Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res. 1999;424(1):83–95. doi: 10.1016/S0027-5107(99)00010-X
  • Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer's disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signaling. 2006;8(11-12):2021–37. doi: 10.1089/ars.2006.8.2021
  • Safaei F, Mehrzadi S, Khadem Haghighian H, Hosseinzadeh A, Nesari A, Dolatshahi M, et al. Protective effects of gallic acid against methotrexate-induced toxicity in rats. Acta Chir Belg. 2018;118(3):152–60. doi: 10.1080/00015458.2017.1394672
  • Navarro A, Gómez C, Sánchez-Pino M-J, González H, Bández MJ, Boveris AD, et al. Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am J Physiol Regul Integr Comp Physiol. 2005;289(5):R1392–R99. doi: 10.1152/ajpregu.00834.2004
  • Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG. Mitochondria-targeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochim Biophys Acta. 2014;1842(8):1282–94. doi: 10.1016/j.bbadis.2013.09.007
  • Park S-K, Page GP, Kim K, Allison DB, Meydani M, Weindruch R, et al. α-and γ-Tocopherol prevent age-related transcriptional alterations in the heart and brain of mice. J Nutr. 2008;138(6):1010–18. doi: 10.1093/jn/138.6.1010
  • Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol. 2012;167(4):699–719. doi: 10.1111/j.1476-5381.2012.02025.x
  • Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003.
  • Li Z-y, Yang Y, Ming M, Liu B. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun. 2011;414(1):5–8. doi: 10.1016/j.bbrc.2011.09.046
  • Fernández-Checa JC, García-Ruiz C, Colell A, Morales A, Marí M, Miranda M, et al. Oxidative stress: role of mitochondria and protection by glutathione. Biofactors. 1998;8 (1-2):7–11. doi: 10.1002/biof.5520080102
  • Das K, Chainy G. Modulation of rat liver mitochondrial antioxidant defence system by thyroid hormone. Biochim Biophys Acta. 2001;1537(1):1–13. doi: 10.1016/S0925-4439(01)00048-5
  • Zhong Q, Putt DA, Xu F, Lash LH. Hepatic mitochondrial transport of glutathione: studies in isolated rat liver mitochondria and H4IIE rat hepatoma cells. Arch Biochem Biophys. 2008;474(1):119–27. doi: 10.1016/j.abb.2008.03.008
  • Pocernich CB, Butterfield DA. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta. 2012;1822(5):625–30. doi: 10.1016/j.bbadis.2011.10.003
  • Butterfield DA, Pocernich CB, Drake J. Elevated glutathione as a therapeutic strategy in Alzheimer's disease. Drug Dev Res. 2002;56(3):428–37. doi: 10.1002/ddr.10095
  • Huseby NE, Ravuri C, Moens U. The proteasome inhibitor lactacystin enhances GSH synthesis capacity by increased expression of antioxidant components in an Nrf2-independent, but p38 MAPK-dependent manner in rat colorectal carcinoma cells; (1029-2470 (Electronic)). eng.
  • Yamamoto N, Sawada H, Izumi Y, Kume T, Katsuki H, Shimohama S, Akaike A, et al. Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress: relevance to Parkinson disease; (0021-9258 (Print)). eng.
  • Marcus SR, Chandrakala M, Nadiger H. Interaction between vitamin E and glutathione in rat brain—effect of acute alcohol administration. J Nutr Biochem. 1993;4(6):336–40. doi: 10.1016/0955-2863(93)90078-B
  • Sukalski KA, Pinto KA, Berntson JL. Decreased susceptibility of liver mitochondria from diabetic rats to oxidative damage and associated increase in α-tocopherol. Free Radic Biol Med. 1993;14(1):57–65. doi: 10.1016/0891-5849(93)90509-S
  • Masaki H, Okano Y, Ochiai Y, Obayashi K, Akamatsu H, Sakurai H. α-Tocopherol increases the intracellular glutathione level in HaCaT Keratinocytes. Free Radic Res. 2002;36(6):705–09. doi: 10.1080/10715760210873
  • Yamamoto N, Sawada H, Izumi Y, Kume T, Katsuki H, Shimohama S, et al. Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress relevance to Parkinson disease. J Biol Chem. 2007;282(7):4364–72. doi: 10.1074/jbc.M603712200
  • Jantas D, Lorenc-Koci E, Kubera M, Lason W. Neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors on lactacystin-induced cell damage in primary cortical neurons. Neurotoxicology. 2011;32(6):845–56. doi: 10.1016/j.neuro.2011.05.013
  • Perez-Alvarez S, Solesio ME, Manzanares J, Jordán J, Galindo MF. Lactacystin requires reactive oxygen species and Bax redistribution to induce mitochondria-mediated cell death. Br J Pharmacol. 2009;158(4):1121–30. doi: 10.1111/j.1476-5381.2009.00388.x
  • Fenteany G, Schreiber SL. Lactacystin, proteasome function, and cell fate. J Biol Chem. 1998;273(15):8545–48. doi: 10.1074/jbc.273.15.8545
  • Lass A, Sohal RS. Electron transport-linked ubiquinone-dependent recycling of α-tocopherol inhibits Autooxidation of mitochondrial membranes. Arch Biochem Biophys. 1998;352(2):229–36. doi: 10.1006/abbi.1997.0606

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.