Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 24, 2021 - Issue 3
699
Views
31
CrossRef citations to date
0
Altmetric
Articles

Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson’s disease

, , , , , & ORCID Icon show all

References

  • Wood-Kaczmar A, Gandhi S, Wood NW. Understanding the molecular causes of Parkinson’s disease. Trends Mol Med. 2006;12(11):521–8. doi: 10.1016/j.molmed.2006.09.007
  • Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348(14):1356–64. doi: 10.1056/NEJM2003ra020003
  • de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35. doi: 10.1016/S1474-4422(06)70471-9
  • Forno LS. Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol. 1996;55(3):259–72. doi: 10.1097/00005072-199603000-00001
  • Prabhu B, et al. Neuroprotective effect of peanut hairy root extract against oxidative stress in PC12 derived neurons. Journal of Medicinally Active Plants. J Med Act Plants. 2013;1(4):125–133.
  • Charradi K, Elkahoui S, Karkouch I, Limam F, Hassine FB, Aouani E. Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat. Neurochem Res. 2012;37(9):2004–13. doi: 10.1007/s11064-012-0821-2
  • Park JS, Park M-K, Oh H-J, Woo Y-J, Lim M-A, Lee J-H, et al. Grape-seed proanthocyanidin extract as suppressors of bone destruction in inflammatory autoimmune arthritis. PLoS One. 2012;7(12):e51377. doi: 10.1371/journal.pone.0051377
  • Sharma SD, Katiyar SK. Dietary grape seed proanthocyanidins inhibit UVB-induced cyclooxygenase-2 expression and other inflammatory mediators in UVB-exposed skin and skin tumors of SKH-1 hairless mice. Pharm Res. 2010;27(6):1092–102. doi: 10.1007/s11095-010-0050-9
  • Uchino R, Madhyastha R, Madhyastha H, Dhungana S, Nakajima Y, Omura S, et al. NFkappaB-dependent regulation of urokinase plasminogen activator by proanthocyanidin-rich grape seed extract: effect on invasion by prostate cancer cells. Blood Coagul Fibrinolysis. 2010;21(6):528–33. doi: 10.1097/MBC.0b013e32833a9b61
  • Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol. 2006;545(1):51–64. doi: 10.1016/j.ejphar.2006.06.025
  • Abd El-Wahab A, Wl-Adawi H, H SK. Towards Understanding The Hepatoprotective effect of grape seeds extract on Cholesterol-Fed rats. Aust J Basic Appl Sci. 2008;2(3):412–417.
  • Pataki T, et al. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am J Clin Nutr. 2002;75(5):894–9. doi: 10.1093/ajcn/75.5.894
  • Saad AA, Youssef MI, El-Shennawy LK. Cisplatin induced damage in kidney genomic DNA and nephrotoxicity in male rats: the protective effect of grape seed proanthocyanidin extract. Food Chem Toxicol. 2009;47(7):1499–506. doi: 10.1016/j.fct.2009.03.043
  • Safwen K, Selima S, Mohamed E, Ferid L, Pascal C, Mohamed A, et al. Protective effect of grape seed and skin extract on cerebral ischemia in rat: implication of transition metals. Int J Stroke. 2015;10(3):415–24. doi: 10.1111/ijs.12391
  • Hwang IK, Yoo K-Y, Kim DS, Jeong Y-K, Kim JD, Shin H-K, et al. Neuroprotective effects of grape seed extract on neuronal injury by inhibiting DNA damage in the gerbil hippocampus after transient forebrain ischemia. Life Sci. 2004;75(16):1989–2001. doi: 10.1016/j.lfs.2004.05.013
  • Devi A, Jolitha AB, Ishii N. Grape seed proanthocyanidin extract (GSPE) and antioxidant defense in the brain of adult rats. Med Sci Monit. 2006;12(4):BR124-9.
  • Wang YJ, Thomas P, Zhong J-H, Bi F-F, Kosaraju S, Pollard A, et al. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res. 2009;15(1):3–14. doi: 10.1007/s12640-009-9000-x
  • Tripanichkul W, Jaroensuppaperch EO. Ameliorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice. Eur Rev Med Pharmacol Sci. 2013;17(10):1360–8.
  • Polazzi E, Mengoni I, Caprini M, Peña-Altamira E, Kurtys E, Monti B. Copper-zinc superoxide dismutase (SOD1) is released by microglial cells and confers neuroprotection against 6-OHDA neurotoxicity. Neurosignals. 2013;21(1-2):112–28. doi: 10.1159/000337115
  • Blum D, Torch S, Lambeng N, Nissou M-F, Benabid A-L, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol. 2001;65(2):135–72. doi: 10.1016/S0301-0082(01)00003-X
  • Lofrumento DD, Nicolardi G, Cianciulli A, Nuccio FD, Pesa VL, Carofiglio V, et al. Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun. 2014;20(3):249–60. doi: 10.1177/1753425913488429
  • Lin TK, Chen S-D, Chuang Y-C, Lin H-Y, Huang C-R, Chuang J-H, et al. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci. 2014;15(1):1625–46. doi: 10.3390/ijms15011625
  • Khan MM, Ahmad A, Ishrat T, Khan MB, Hoda MN, Khuwaja G, et al. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res. 2010;1328:139–51. doi: 10.1016/j.brainres.2010.02.031
  • Jin F, Wu Q, Lu Y-F, Gong Q-H, Shi J-S. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol. 2008;600(1-3):78–82. doi: 10.1016/j.ejphar.2008.10.005
  • Srivastava G, Dixit A, Yadav S, Patel DK, Prakash O, Singh MP. Resveratrol potentiates cytochrome P450 2 d22-mediated neuroprotection in maneb- and paraquat-induced parkinsonism in the mouse. Free Radic Biol Med. 2012;52(8):1294–306. doi: 10.1016/j.freeradbiomed.2012.02.005
  • Teixeira MD, Souza CM, Menezes APF, Carmo MRS, Fonteles AA, Gurgel JP, et al. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol Biochem Behav. 2013;110:1–7. doi: 10.1016/j.pbb.2013.05.012
  • Ruan H, Yang Y, Zhu X, Wang X, Chen R. Neuroprotective effects of (+/-)-catechin against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity in mice. Neurosci Lett. 2009;450(2):152–7. doi: 10.1016/j.neulet.2008.12.003
  • Nobre Junior HV, Cunha GMA, Maia FD, Oliveira RA, Moraes MO, Rao VSN. Catechin attenuates 6-hydroxydopamine (6-OHDA)-induced cell death in primary cultures of mesencephalic cells. Comp Biochem Physiol C Toxicol Pharmacol. 2003;136(2):175–80. doi: 10.1016/S1532-0456(03)00198-4
  • Nie G, Jin C, Cao Y, Shen S, Zhao B. Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch Biochem Biophys. 2002;397(1):84–90. doi: 10.1006/abbi.2001.2636
  • Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78(5):1073–82. doi: 10.1046/j.1471-4159.2001.00490.x
  • Bonilla-Ramirez L, Jimenez-Del-Rio M, Velez-Pardo C. Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile parkinsonism. Gene. 2013;512(2):355–63. doi: 10.1016/j.gene.2012.09.120
  • Bitu Pinto N, da Silva Alexandre B, Neves KRT, Silva AH, Leal LKAM, Viana GSB. Neuroprotective properties of the Standardized extract from Camellia sinensis (green Tea) and Its main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA model of Parkinson’s disease. Evid Based Complement Alternat Med. 2015;2015:161092. doi: 10.1155/2015/161092
  • Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem. 2013;138(2-3):1028–33. doi: 10.1016/j.foodchem.2012.11.022
  • Lotharius J, Dugan LL, O’Malley KL. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci. 1999;19(4):1284–93. doi: 10.1523/JNEUROSCI.19-04-01284.1999
  • Dodel RC, Du Y, Bales KR, Zaodong L, Carvey PM, Paul SM. Caspase-3-like proteases and 6-hydroxydopamine induced neuronal cell death. Brain Res Mol Brain Res. 1999;64(1):141–8. doi: 10.1016/S0169-328X(98)00318-0
  • Rupinder SK, Gurpreet AK, Manjeet S. Cell suicide and caspases. Vascul Pharmacol. 2007;46(6):383–93. doi: 10.1016/j.vph.2007.01.006
  • Hartmann A, Hunot S, Michel PP, Muriel M-P, Vyas S, Faucheux BA, et al. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci U S A. 2000;97(6):2875–80. doi: 10.1073/pnas.040556597
  • Zhen J, Qu Z, Fang H, Fu L, Wu Y, Wang H, et al. Effects of grape seed proanthocyanidin extract on pentylenetetrazole-induced kindling and associated cognitive impairment in rats. Int J Mol Med. 2014;34(2):391–8. doi: 10.3892/ijmm.2014.1796
  • Huang Z, de la Fuente-Fernandez R, Stoessl AJ. Etiology of Parkinson’s disease. Can J Neurol Sci. 2003;30 Suppl 1:S10–8. doi: 10.1017/S031716710000319X
  • Mecocci P, et al. Oxidative stress and dementia: new perspectives in AD pathogenesis. Aging (Milano). 1997;9(4 Suppl):51–2.
  • Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem. 2001;8(7):721–38. doi: 10.2174/0929867013372922
  • Jenner P. Oxidative stress and Parkinson’s disease. Handb Clin Neurol. 2007;83:507–20. doi: 10.1016/S0072-9752(07)83024-7
  • Soto-Otero R, Méndez-Álvarez E, Hermida-Ameijeiras Á, Muñoz-Patiño AM, Labandeira-Garcia JL. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem. 2000;74(4):1605–12. doi: 10.1046/j.1471-4159.2000.0741605.x
  • Pelzer LE, Guardia T, Juarez AO, Guerreiro E. Acute and chronic antiinflammatory effects of plant flavonoids. Farmaco. 1998;53(6):421–4. doi: 10.1016/S0014-827X(98)00046-9
  • Zhang F, Shi J-S, Zhou H, Wilson B, Hong J-S, Gao H-M. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol. 2010;78(3):466–77. doi: 10.1124/mol.110.064535
  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel M-P, Ruberg M, et al. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci U S A. 1997;94(14):7531–6. doi: 10.1073/pnas.94.14.7531
  • Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, et al. Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18754–9. doi: 10.1073/pnas.0704908104
  • Cao S, Theodore S, Standaert DG. Fcgamma receptors are required for NF-kappaB signaling, microglial activation and dopaminergic neurodegeneration in an AAV-synuclein mouse model of Parkinson’s disease. Mol Neurodegener. 2010;5:42. doi: 10.1186/1750-1326-5-42
  • Zhong H, May MJ, Jimi E, Ghosh S. The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell. 2002;9(3):625–36. doi: 10.1016/S1097-2765(02)00477-X
  • Chu AJ. Antagonism by bioactive polyphenols against inflammation: a systematic view. Inflamm Allergy Drug Targets. 2014;13(1):34–64. doi: 10.2174/1871528112666131119211002
  • Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener. 2015;4:19. doi: 10.1186/s40035-015-0042-0
  • Zhang ZJ, et al. Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int J Mol Med. 2011;27(2):195–203.
  • Stott SR, Barker RA. Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson’s disease. Eur J Neurosci. 2014;39(6):1042–56. doi: 10.1111/ejn.12459
  • Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience. 1994;59(2):401–15. doi: 10.1016/0306-4522(94)90605-X
  • Metz GA, Tse A, Ballermann M, Smith LK, Fouad K. The unilateral 6-OHDA rat model of Parkinson’s disease revisited: an electromyographic and behavioural analysis. Eur J Neurosci. 2005;22(3):735–44. doi: 10.1111/j.1460-9568.2005.04238.x
  • Perumal AS, Gopal VB, Tordzro WK, Cooper TB, Cadet JL. Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain. Brain Res Bull. 1992;29(5):699–701. doi: 10.1016/0361-9230(92)90142-K
  • Chis IC, Ungureanu MI, Marton A, Simedrea R, Muresan A, Postescu I-D, et al. Antioxidant effects of a grape seed extract in a rat model of diabetes mellitus. Diab Vasc Dis Res. 2009;6(3):200–4. doi: 10.1177/1479164109336692
  • Arivazhagan P, Thilakavathy T, Panneerselvam C. Antioxidant lipoate and tissue antioxidants in aged rats. J Nutr Biochem. 2000;11(3):122–7. doi: 10.1016/S0955-2863(99)00079-0
  • Balu M, Sangeetha P, Haripriya D, Panneerselvam C. Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract. Neurosci Lett. 2005;383(3):295–300. doi: 10.1016/j.neulet.2005.04.042
  • Ross GW, Petrovitch H, Abbott RD, Nelson J, Markesbery W, Davis D, et al. Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol. 2004;56(4):532–9. doi: 10.1002/ana.20226
  • Marsden CD. Parkinson’s disease. Lancet. 1990;335(8695):948–52. doi: 10.1016/0140-6736(90)91006-V
  • Lang AE, Lozano AM. Parkinson’s disease. first of two parts. N Engl J Med. 1998;339(15):1044–53. doi: 10.1056/NEJM199810083391506
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909. doi: 10.1016/S0896-6273(03)00568-3
  • Metzakopian E, Bouhali K, Alvarez-Saavedra M, Whitsett JA, Picketts DJ, Ang S-L. Genome-wide characterisation of Foxa1 binding sites reveals several mechanisms for regulating neuronal differentiation in midbrain dopamine cells. Development. 2015;142(7):1315–24. doi: 10.1242/dev.115808
  • Jaeger I, Arber C, Risner-Janiczek JR, Kuechler J, Pritzsche D, Chen I-C, et al. Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells. Development. 2011;138(20):4363–74. doi: 10.1242/dev.066746
  • Pervin M, Hasnat M, Lee Y, Kim D, Jo J, Lim B. Antioxidant activity and acetylcholinesterase inhibition of grape skin anthocyanin (GSA). Molecules. 2014;19(7):9403–18. doi: 10.3390/molecules19079403
  • Burgess A, Vigneron S, Brioudes E, Labbé J-C, Lorca T, Castro A. Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A. 2010;107(28):12564–9. doi: 10.1073/pnas.0914191107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.