Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 24, 2021 - Issue 6
202
Views
2
CrossRef citations to date
0
Altmetric
Articles

Prenatal dietary choline supplementation modulates long-term memory development in rat offspring

&

References

  • Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature. 2000;404(6774):190–3.
  • Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev. 2003;27(1):3–18.
  • Oyama S. The ontogeny of information: developmental systems and evolution. Durham: Duke University Press; 2000.
  • Gottlieb G. Environmental and behavioral influences on gene activity. Curr Dir Psychol Sci. 2000;9:93–7.
  • Johnston TD, Gottlieb G. Neophenogenesis: a developmental theory of phenotypic evolution. J Theor Biol. 1990;147(4):471–95.
  • Zeisel SH. Nutritional genomics: defining the dietary requirement and effects of choline. J Nutr. 2011;141:531–4.
  • Blusztajn JK. Developmental neuroscience: enhanced: choline, a vital amine. Science. 1998;281(5378):794–5.
  • Zeisel SH, Blusztajn JK. Choline and human nutrition. Annu Rev Nutr. 1994;14(1):269–96.
  • McCann JC, Hudes M, Ames BN. An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring. Neurosci Biobehav Rev. 2006;30(5):696–712.
  • Meck WH, Smith RA, Williams CL. Pre-and postnatal choline supplementation produces long-term facilitation of spatial memory. Dev Psychobiol. 1988;21(4):339–53.
  • Meck WH, Williams CL. Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport. 1997;8(13):2831–5.
  • Meck WH, Williams CL. Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan. Neurosci Biobehav Rev. 2003;27(4):385–99.
  • Meck WH, Williams CL, Cermak JM, Blusztajn JK. Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age-related dementia. Front Integr Neurosci. 2008;1:1–11.
  • Wong-Goodrich SJE, Mellott TJ, Glenn MJ, Blusztajn JK, Williams CL. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus. Neurobiol Dis. 2008;30:255–69.
  • Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res. 1988;31:47–59.
  • Ameen-Ali KE, Easton A, Eacott MJ. Moving beyond standard procedures to assess spontaneous recognition memory. Neurosci Biobehav Rev. 2015;53:37–51.
  • Scali C, Giovannini MG, Bartolini L, Prosperi C, Hinz V, Schmidt B, Pepeu G. Effect of metrifonate on extracellular brain acetylcholine and object recognition in aged rats. Eur J Pharmacol. 1997;325(2):173–80.
  • Scali C, Giovannini MG, Prosperi C, Bartolini L, Pepeu G. Tacrine administration enhances extracellular acetylcholinein vivoand restores the cognitive impairment in aged rats. Pharmacol Res. 1997;36(6):463–9.
  • Winters BD, Bussey TJ. Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. Eur J Neurosci. 2005;21:2263–70.
  • Besheer J, Short KR, Bevins RA. Dopaminergic and cholinergic antagonism in a novel-object detection task with rats. Behav Brain Res. 2001;126(1):211–7.
  • Abe H, Ishida Y, Iwasaki T. Perirhinal N-methyl-D-aspartate and muscarinic systems participate in object recognition in rats. Neurosci Lett. 2004;356(3):191–4.
  • Puma C, Deschaux O, Molimard R, Bizot JC. Nicotine improves memory in an object recognition task in rats. Eur Neuropsychopharmacol. 1999;9(4):323–7.
  • Melichercik AM, Elliott KS, Bianchi C, Ernst SM, Winters BD. Nicotinic receptor activation in perirhinal cortex and hippocampus enhances object memory in rats. Neuropharmacology. 2012;62(5):2096–2105.
  • Mellott TJ, Williams CL, Meck WH, Blusztajn JK. Prenatal choline supplementation advances hippocampal development and enhances MAPK and CREB activation. FASEB J. 2004;18:545–7.
  • Wainwright PE, Colombo J. Nutrition and the development of cognitive functions: interpretation of behavioral studies in animals and human infants. Am J Clin Nutr. 2006;84(5):961–70.
  • Rudy JW, Morledge P. Ontogeny of contextual fear conditioning in rats: implications for consolidation, infantile amnesia, and hippocampal system function. Behav Neurosci. 1994;108(2):227–34.
  • Stanton ME. Multiple memory systems, development and conditioning. Behav Brain Res. 2000;110(1):25–37.
  • Gemberling GA, Domjan M, Amsel A. Aversion learning in 5-day-old rats: taste–toxicosis and texture–shock associations. J Comp Physiol Psychol. 1980;94(4):734–45.
  • Kucharski D, Spear NE. Conditioning of aversion to an odor paired with peripheral shock in the developing rat. Dev Psychobiol. 1984;17(5):465–79.
  • Hyson RL, Rudy JW. Ontogenesis of learning. II. Variation in the rat’s reflexive and learned responses to acoustic stimulation. Dev Psychobiol. 1984;17(3):263–83.
  • Moye TB, Rudy JW. Ontogenesis of learning: VI. Learned and unlearned responses to visual stimulation in the infant hooded rat. Dev Psychobiol. 1985;18(5):395–409.
  • Paczkowski C, Ivkovich D, Stanton ME. Ontogeny of eyeblink conditioning using a visual conditional stimulus. Dev Psychobiol. 1999;35(4):253–63.
  • Markiewicz B, Kucharski D, Spear NE. Ontogenetic comparison of memory for Pavlovian conditioned aversions to temperature, vibration, odor, or brightness. Dev Psychobiol. 1986;19(2):139–54.
  • Campbell BA, Campbell EH. Retention and extinction of learned fear in infant and adult rats. J Comp Physiol Psychol. 1962;55(1):1–8.
  • Rudy JW. Contextual conditioning and auditory cue conditioning dissociate during development. Behav Neurosci. 1993;107(5):887–91.
  • Burman MA, Murawski NJ, Schiffino FL, Rosen JB, Stanton ME. Factors governing single-trial contextual fear conditioning in the weanling rat. Behav Neurosci. 2009;123(5):1148–52.
  • Krüger HS, Brockmann MD, Salamon J, Ittrich H, Hanganu-Opatz IL. Neonatal hippocampal lesion alters the functional maturation of the prefrontal cortex and the early cognitive development in pre-juvenile rats. Neurobiol Learn Mem. 2012;97(4):470–81.
  • Westbrook SR, Brennan LE, Stanton ME. Ontogeny of object versus location recognition in the rat: acquisition and retention effects. Dev Psychobiol. 2014;56(7):1492–1506.
  • Andersen SL, Teicher MH. Delayed effects of early stress on hippocampal development. Neuropsychopharmacology. 2004;29(11):1988–93.
  • Reger ML, Hovda DA, Giza CC. Ontogeny of rat recognition memory measured by the novel object recognition task. Dev Psychobiol. 2009;51(8):672–8.
  • Heyser CJ, Ferris JS. Object exploration in the developing rat: methodological considerations. Dev Psychobiol. 2013;55(4):373–381.
  • Lavenex P, Lavenex PB. Building hippocampal circuits to learn and remember: insights into the development of human memory. Behav Brain Res. 2013;254:8–21.
  • Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr. 2002;132(8):2333S–5S.
  • Lopez G-Coviella I, Agut J, Ortiz JA, Wurtman RJ. Effects of orally administered cytidine 5′-diphosphate choline on brain phospholipid content. J Nutr Biochem. 1992;3(6):313–15.
  • Cohen EL, Wurtman RJ. Brain acetylcholine: control by dietary choline. Science. 1976;191(4227):561–2.
  • Fernstrom MH, Wurtmar RJ. Increase in striatal choline acetyltransferase activity after choline administration. Brain Res. 1979;165:358–61.
  • Micheau J, Marighetto A. Acetylcholine and memory: a long, complex and chaotic but still living relationship. Behav Brain Res. 2011;221(2):424–9.
  • Klinkenberg I, Sambeth A, Blokland A. Acetylcholine and attention. Behav Brain Res. 2011;221(2):430–42.
  • Arai AC, Kessler M. Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr Drug Targets. 2007;8(5):583–602.
  • Blair MG, Nguyen NNQ, Albani SH, Matthew ML, Andrawis MM, Owen LM, Dumas TC. Developmental changes in structural and functional properties of hippocampal AMPARs parallels the emergence of deliberative spatial navigation in juvenile rats. J Neurosci. 2013;33(30):12218–28.
  • Kealy J, Commins S. The rat perirhinal cortex: a review of anatomy, physiology, plasticity and function. Prog. Neurobiol. 2011;93(4):522–48.
  • Meissner TW, Nordt M, Weigelt S. Prolonged functional development of the parahippocampal place area and occipital place area. Neuroimage. 2019;191:104–15.
  • Sugar J, Witter MP. Postnatal development of retrosplenial projections to the parahippocampal region of the rat. Elife. 2016;23:5. pii: e13925.
  • Pepeu G, Scali C, Giovannini MG. The role of cholinergic system in novel object recognition. In: Handbook of behavioral neuroscience. Vol. 27. London: Elsevier; 2018. p. 371–8.
  • Tang Y, Mishkin M, Aigner TG. Effects of muscarinic blockade in perirhinal cortex during visual recognition. Proc Natl Acad Sci. 1997;94:12667–9.
  • Cermak JM, Holler T, Jackson DA, Blusztajn JK. Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB J. 1998;12(3):349–57.
  • Moreno HC, de Brugada I, Carias D, Gallo M. Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats. Nutr Neurosci. 2013;16(6):269–74.
  • Meck WH, Williams CL. Perinatal choline supplementation increases the threshold for chunking in spatial memory. NeuroReport. 1997;8:3053–9.
  • Tuscher JJ, Fortress AM, Kim J, Frick KM. Regulation of object recognition and object placement by ovarian sex steroid hormones. Behav Brain Res. 2015;285:140–157.
  • Cost KT, Williams-Yee ZN, Fustok JN, Dohanich GP. Sex differences in object-in-place memory of adult rats. Behav Neurosci. 2012;126(3):457–64.
  • Cheatham CL, Goldman BD, Fischer LM, da Costa KA, Reznick JS, Zeisel SH. Phosphatidylcholine supplementation in pregnant women consuming moderate-choline diets does not enhance infant cognitive function: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2012;96(6):1465–72.
  • Caudill MA, Strupp BJ, Muscalu L, Nevins JE, Canfield RL. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double-blind, controlled feeding study. FASEB J. 2018;32(4):2172–80.
  • Fantz RL. Pattern vision in newborn infants. Science. 1963;140(3564):296–7.
  • Streri A, de Hevia MDD, Izard V, Coubart A. What do we know about neonatal cognition? Behav Sci. 2013;3(1):154–69.
  • Milewski AE, Siqueland ER. Discrimination of color and pattern novelty in one-month human infants. J Exp Child Psychol. 1975;19(1):122–36.
  • Friedman S, Bruno LA, Vietze P. Newborn habituation to visual stimuli: a sex difference in novelty detection. J Exp Child Psychol. 1974;18(2):242–51.
  • Olson GM. The development of infant memory. In: Moscovitch M, editor. Infant memory: its relation to normal and pathological memory in humans and other animals. Vol 9. New York: Plenum Press; 1984. p. 29–48.
  • Diamond A. Rate of maturation of the hippocampus and the developmental progression of children’s performance on the delayed non-matching to sample and visual paired comparison tasks. Ann N Y Acad Sci. 1990;608(1):394–433.
  • Carver LJ, Bauer PJ, Nelson CA. Associations between infant brain activity and recall memory. Dev Sci. 2000;3:234–46.
  • Rose SA. Differential rates of visual information processing in full-term and preterm infants. Child Dev. 1983;54: 1189–98.
  • Beauchamp MH, Thompson DK, Howard K, Doyle LW, Egan GF, Inder TE, Anderson PJ. Preterm infant hippocampal volumes correlate with later working memory deficits. Brain. 2008;131(11):2986–94.
  • Cheatham CL, Bauer PJ, Georgieff MK. Predicting individual differences in recall by infants born preterm and full term. Infancy. 2006;10(1):17–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.