Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 24, 2021 - Issue 6
289
Views
1
CrossRef citations to date
0
Altmetric
Articles

Aggravated effects of coexisting marginal thiamine deficits and zinc excess on SN56 neuronal cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Victor M, Adams RD, Collins GH. The Wernicke-Korsakoff syndrome. A clinical and pathological study of 245 patients, 82 with post-mortem examinations. Contemp Neurol Ser. 1971;7:1–206.
  • Bizon-Zygmanska D, Jankowska-Kulawy A, Bielarczyk H, Pawełczyk T, Ronowska A, Marszałł M, Szutowicz A. Acetylo-CoA metabolism in amprolium-evoked thiamine pyrophosphate deficits in cholinergic SN56 neuroblastoma cells. Neurochem Int. 2011;59:208–16.
  • Gibson GE, Hirsch JA, Fonzetti P, Jordan BD, Cirio RT, Elder J. Vitamin B1 (thiamine) and dementia. Ann N Y Acad Sci. 2016;1367:21–30.
  • Wang C, Fei G, Pan X, Sang S, Wang L, Zhong C, Jin L. High thiamine diphosphate level as a protective factor for Alzheimer's disease. Neurol Res. 2018;40(8):658–65.
  • Frölich F, Götz ME, Weinmüller M, Youdim MB, Barth N, Dirr A, et al. (R)-, but not (s)-alpha lipoic acid stimulates deficient brain pyruvate dehydrogenase complex in vascular dementia, but not in Alzheimer dementia. J Neural Transm (Vienna). 2004;111:295–310.
  • Gazaryan IG, Krasinskaya IP, Kristal BS, Brown AM. Zinc irreversibly damages major enzymes of energy production and antioxidant defence prior to mitochondrial permeability transition. J Biol Chem. 2007;282:24373–80.
  • Bastos FM, Lopes SA, Corceiro VN, Matias CM, Dionísio JC, Sampaio Dos Aidos FD, et al. postsynaptic zinc potentiation elicited by KCl depolarization at hippocampal mossy fiber synapses. Gen Physiol Biophys. 2017;36:289–96.
  • Ronowska A, Gul-Hinc S, Bielarczyk H, Pawełczyk T, Szutowicz A. Effects of zinc on SN56 cholinergic neuroblastoma cells. J Neurochem. 2007;103:972–83.
  • Ronowska A, Dyś A, Jankowska-Kulawy A, Klimaszewska-Łata J, Bielarczyk H, Romianowski P, et al. Short-term effects of zinc on acetylcholine metabolism and viability of SN56 cholinergic neuroblastoma cells. Neurochem Int. 2010;56:143–51.
  • Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 2009;10:780–91.
  • Zyśk M, Bielarczyk H, Gul-Hinc S, Dyś A, Gapys B, Ronowska A, et al. Phenotype-dependent interactions between N-acetyl-L-aspartate and acetyl-CoA in septal SN56 cholinergic cells exposed to an excess of zinc. J Alzheimers Dis. 2017;56:1145–58.
  • Gil-Bea FJ, García-Alloza M, Domínguez J, Marcos B, Ramírez MJ. Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit. Neurosci Let. 2005;375:37–41.
  • Jankowska-Kulawy A, Bielarczyk H, Pawełczyk T, Wróblewska M, Szutowicz A. Acetyl-CoA and acetylcholine metabolism in nerve terminal compartment of thiamine deficient rat brain. J Neurochem. 2010;115:333–42.
  • Hammond DN, Lee HJ, Tonsgard JH, Wainer BH. Development and characterization of clonal cell lines derived from septal cholinergic neurons. Brain Res. 1990;512:190–200.
  • MacDonald RS, Wollard-Biddle LC, Browning J, Thornton Jr JD, O’Dei JD. Zinc deprivation of murine 3T3 cells by use of diethylenetrinitrilopentaacetate impairs DNA synthesis upon stimulation with insulin-like growth factor-1 (IGF-1). J Nutr. 1998;128:1600–5.
  • Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2001. 2001 Appendix 3. doi:10.1002/0471142735.ima03bs21.
  • Chen CJ, Liao SL. Neurotrophic and neurotoxic effects of zinc on neonatal cortical neurons. Neurochem Int. 2003;42:471–9.
  • Lebiedzińska A, Marszałł ML, Kuta J, Szefer P. Reversed-phase high-performance liquid chromatography method with coulometric electrochemical and ultraviolet detection for the quantification of vitamins B(1) (thiamine), B(6) (pyridoxamine, pyridoxal and pyridoxine) and B(12) in animal and plant foods. J Chromatogr A. 2007;1173:71–80.
  • Fonnum F. A rapid radiochemical method for the determination of choline acetyltransferase. J Neurochem. 1975;24:407–9.
  • Szutowicz A, Stepien M, Piec G. Determination of pyruvate dehydrogenase and acetyl-CoA synthetase activities using citrate synthase. Anal Biochem. 1981;115:81–7.
  • Villafranca J. The mechanism of aconitase action: evidence for an enzyme isomerization by studies of inhibition by tricarboxylic acids. J Biol Chem. 1974;249:6149.
  • Plaut GW, Aogaichi T. Purification and properties of diphosphopyridine nuleotide-linked isocitrate dehydrogenase of mammalian liver. J Biol Chem. 1968;243:5572–83.
  • Pawełczyk T, Angielski S. Cooperation of Ca and pH in regulation of the activity of the 2-oxoglutarate dehydrogenase complex and its components from bovine kidney cortex. Acta Biochim Pol. 1984;31:289–305.
  • Szutowicz A, Bielarczyk H. Elimination of CoASH interference from acetyl-CoA cycling assay by maleic anhydride. Anal Biochem. 1987;164:292–6.
  • Israël M, Lesbats B. Application to mammalian tissues of the chemiluminescent method for detecting acetylcholine. J Neurochem. 1982;39:248–50.
  • Bradford M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
  • Blusztajn JK, Berse B. The cholinergic neuronal phenotype in Alzheimer's disease. Metab Brain Dis. 2000;15:45–64.
  • Bozym RA, Chimienti F, Giblin LJ, Gross GW, Korichneva I, Li Y, et al. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp Biol Med. 2010;235:741–50.
  • Zatta P, Lucchini R, van Rensburg SJ, Taylor A. The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Res Bull. 2003;62:15–28.
  • Hühmer AF, Biringer RG, Amato H, Fonteh AN, Harrington MG. Protein analysis in human cerebrospinal fluid: physiological aspects, current progress and future challenges. Dis Markers. 2006;22:3–26.
  • Granzotto A, Sensi SL. Intracellular zinc is a critical intermediate in the excitotoxic cascade. Neurobiol Dis. 2015;81:25–37.
  • Parkhomenko YM, Kudryavtsev PA, Pylypchuk SY, Chekhivska LI, Stepanenko SP, Sergiichuk AA, Bunik V. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels. J Neurochem. 2011;117:1055–65.
  • Lonsdale D. Thiamine and magnesium deficiencies: keys to disease. Med Hypotheses. 2015;84:129–34.
  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease. Lancet. 2006;368:387–403.
  • Mkrtchyan G, Graf A, Bettendorff L, Bunik V. Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase. Neurochem Int. 2016;101:66–75.
  • Hazell AS, Pannunzio P, Rama Rao KV, Pow DV, Rambaldi A. Thiamine deficiency results in downregulation of the GLAST glutamate transporter in cultured astrocytes. Glia. 2003;43:175–84.
  • Gong YS, Hu K, Yang LQ, Guo J, Gao YQ, Song FL, et al. Comparative effects of EtOH consumption and thiamine deficiency on cognitive impairment, oxidative damage, and β-amyloid peptide overproduction in the brain. Free Radic Biol Med. 2017;108:163–73.
  • Danscher G, Jensen KB, Frederickson CJ, Kemp K, Andreasen A, Juhl S, et al. Increased amount of zinc in the hippocampus and amygdala of Alzheimer's diseased brains: a proton-induced X-ray emission spectroscopic analysis of cryostat sections from autopsy material. J Neurosci Methods. 1997;76:53–9.
  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. Neurol. Sci. 1998;158:47–52.
  • Mastrogiacoma F, Bettendorff L, Grisar T, Kish SJ. Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer's disease. Ann Neurol. 1996;39:585–91.
  • Bubber P, Ke ZJ, Gibson GE. Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochem Int. 2004;45:1021–8.
  • Zhao Y, Pan X, Zhao J, Wang Y, Peng Y, Zhong C. Decreased transketolase activity contributes to impaired hippocampal neurogenesis induced by thiamine deficiency. J Neurochem. 2009;111:537–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.