Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 24, 2021 - Issue 6
291
Views
3
CrossRef citations to date
0
Altmetric
Articles

Maqui berry (Aristotelia chilensis) extract improves memory and decreases oxidative stress in male rat brain exposed to ozone

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci. 2005;8:111–20.
  • Farfán-García ED, Castillo-Hernández MC, Pinto-Almazán R, Rivas-Arancibia S, Gallardo JM, Guerra-Araiza C. Tibolone prevents oxidation and ameliorates cholinergic deficit induced by ozone exposure in the male rat hippocampus. Neurochem Res. 2014;39:1776–86.
  • De Vizcaya Ruiz AMG, Del Razo LM. Daño Oxidativo y Enfermedades Crónico-Degenerativas Asociadas a la Contaminación Ambiental. In: Konigsberg Fainstein M, Martínez Moreno M, editors. Radicales libres y estrés oxidativo. Aplicaciones médicas. México, DF: El Manual Moderno; 2008; p. 459–74.
  • Loomis DP, Borja-Aburto VH, Bangdiwala SI, Shy CM. Ozone exposure and daily mortality in Mexico City: a time-series analysis. Res Rep Health Eff Inst. 1996;(75):1–37.
  • Brauer M, Brook JR. Ozone personal exposures and health effects for selected groups residing in the Fraser Valley. Atmos Environ. 1997;31:2113–21.
  • Brook RD, Brook JR, Urch B, Vincent R, Rajagopalan S, Silverman F. Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation. 2002;105:1534–6.
  • Barraza-Villarreal A, Sunyer J, Hernandez-Cadena L, Escamilla-Nuñez MC, Sienra-Monge JJ, Ramírez-Aguilar M, et al. Air pollution, airway inflammation, and lung function in a cohort study of Mexico City schoolchildren. Environ Health Perspect. 2008;116:832–8.
  • Genc S, Zadeoglulari Z, Fuss S, Genc K. The adverse effects of air pollution on the nervous system. J Toxicol. 2012;2012:1–23. Article ID 782462.
  • Chen JC, Schwartz J. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults. Neurotoxicology. 2009;30:231–9.
  • Postlethwait EM, Joad JP, Hyde DM, Schelegle ES, Bric JM, Weir AJ, et al. Three-dimensional mapping of ozone-induced acute cytotoxicity in tracheobronchial airways of isolated perfused rat lung. Am J Respir Cell Mol Biol. 2000;22:191–9.
  • Pryor WA, Church DF. Aldehydes, hydrogen peroxide, and organic radicals as mediators of ozone toxicity. Free Radic Biol Med. 1991;11:41–6.
  • Sunil V, Vayas K, Massa C, Gow A, Laskin J, Laskin D. Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics. Toxicol Sci. 2013;133:309–19.
  • Dorado-Martínez C, Paredes-Carbajal C, Mascher D, Borgonio-Pérez G, Rivas-Arancibia S. Effects of different ozone doses on memory, motor activity and lipid peroxidation levels in rats. Int J Neurosci. 2001;108:149–61.
  • Gackière F, Saliba L, Baude A, Bosler O, Strube C. Ozone inhalation activates stress-responsive regions of the CNS. J Neurochem. 2011;117:961–72.
  • Guerra-Araiza C, Álvarez-Mejía AL, Sánchez-Torres S, Farfan-García E, Mondragón-Lozano R, Pinto-Almazán R, et al. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic Res. 2013;47(6-7):451–62.
  • Rodríguez-Martínez E, Martínez F, Espinosa-García M, Maldonado P, Rivas-Arancibia S. Mitochondrial dysfunction in the hippocampus of rats caused by chronic oxidative stress. Neuroscience. 2013;252:384–95.
  • Pereyra-Muñoz N, Rugerio-Vargas C, Angoa-Pérez M, Borgonio-Pérez G, Rivas-Arancibia S. Oxidative damage in substantia nigra and striatum of rats chronically exposed to ozone. J Chem Neuroanat. 2006;31:114–23.
  • Rivas-Arancibia S, Guevara-Guzmán R, López-Vidal Y, Rodríguez-Martínez E, Zanardo-Gomes M, Angoa-Pérez M, et al. Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci. 2010;113:187–97.
  • Ávila-Costa MR, Colín-Barenque L, Fortoul TI, Machado-Salas P, Espinosa-Villanueva J, Rugerio-Vargas C. Memory deterioration in an oxidative stress model and its correlation with cytological changes on rat hippocampus CA1. Neurosci Lett. 1999;270:107–9.
  • Ávila-Costa MR, Colín-Barenque L, Fortoul TI, Machado-Salas JP, Espinosa-Villanueva J, Rugerio-Vargas C, et al. Motor impairments in an oxidative stress model and its correlation with cytological changes on rat striatum and prefrontal cortex. Int J Neurosci. 2001;108(3–4):193–200.
  • Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol Nutr Food Res. 2007;51:675–83.
  • Seeram NP. Bioactive polyphenols from foods and dietary supplements: challenges and opportunities. In: Ho CT, Wang M, Sang S, editors. Herbs: challenges in chemistry and biology; ACS Symposium Series 925 (Herbs). New York: Oxford University Press; 2006; p. 25–38.
  • Seeram NP, Momin RA, Bourquin LD, Nair MG. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides from cherries and berries. Phytomedicine. 2001;8:362–9.
  • Seeram NP, Nair MG. Inhibition of lipid peroxidation and structure-activity-related studies of the dietary constituents, anthocyanins, anthocyanidins and catechins. J Agric Food Chem. 2002;50:5308–12.
  • Miranda-Rottmann S, Aspillaga AA, Perez DD, Vasquez L, Martinez ALF, Leighton F. Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress. J Agric Food Chem. 2002;50:7542–7.
  • Escribano-Bailon MT, Alcalde-Eon C, Munoz O, Rivas-Gonzalo JC, Santos-Buelga C. Anthocyanins in berries of Maqui (Aristotelia chilensis (Mol.) Stuntz). Phytochem Anal. 2006;17:8–14.
  • Céspedes CL, El-Hafidi M, Pavon N, Alarcon J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem. 2008;107:820–9.
  • Araos JP. Aristotelia chilensis: a possible nutraceutical or functional food. Med Chem. 2015;5:378–82.
  • Fuentealba J, Dibarrart A, Saez-Orellana F, Fuentes-Fuentes MC, Oyanedel CN, Guzmán J, et al. Synaptic silencing and plasma membrane dyshomeostasis induced by amyloid-β peptide are prevented by Aristotelia chilensis enriched extract. J Alzheimers Dis. 2012;31:879–89.
  • Bautista-Orozco L, Girones-Vilaplana A, Gonzalez Trujano E, Garcia-Viguera C, Moreno AD, Diaz Ruiz A, et al. Neuroprotective effect of Aristotelia Chilensis (maqui berry) extract and dapsone in a status epilepticus model. Conference: III International Congress food Technology, Quality and safety; 2016; Novi Sad, Serbia.
  • Rodríguez K, Ah-Hen KS, Vega-Gálvez A, Vásquez V, Quispe-Fuentes I, Rojas P, et al. Changes in bioactive components and antioxidant capacity of maqui, Aristotelia chilensis [Mol] Stuntz, berries during drying. LWT–Food Science and Technology. 2016;65:537–42.
  • Gironés-Vilaplana A, Baenas N, Villaño D, Speisky H, García-Viguera C, Moreno DA. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J Functional Foods. 2014;7:599–608.
  • Mihara H, Uchiyama M. Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;1:271–8.
  • Münch G, Mayer S, Michaelis J, Hipkiss AR, Riederer P, Müller R, et al. Influence of advanced glycation end-products and AGE-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide. Biochim Biophys Acta. 1997;1360:17–29.
  • Pinto-Almazán R, Rivas-Arancibia S, Farfán-García ED, Rodríguez-Martínez E, Guerra-Araiza C. Neuroprotective effects of tibolone against oxidative stress induced by ozone exposure. Rev Neurol. 2014;58:441–8.
  • Casadesus G, Shukitt-Hale B, Stellwagen HM, Zhu X, Lee HG, Smith MA, et al. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci. 2004;7(5–6):309–16.
  • Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT, Ellis JA, et al. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med. 2008;45:295–305.
  • Krikorian R, Boespflug EL, Fleck DE, Stein AL, Wightman JD, Shidler MD, et al. Concord grape juice supplementation and neurocognitive function in human aging. J Agric Food Chem. 2012;60:5736–42.
  • Krikorian R, Shidler MD, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem. 2010;58:3996–4000.
  • Rivas-Arancibia S, Vazquez-Sandoval R, Gonzalez-Kladiano D, Schneider-Rivas S, Lechuga-Guerrero A. Effects of O3 exposure in rats on memory and levels of brain and pulmonary superoxide dismutase. Environ Res. 1998;76:33–9.
  • Lorigados-Pedre L, Gallardo JM, Morales Chacón LM, Vega García A, Flores-Mendoza M, Neri-Gómez T, et al. Oxidative stress in patients with drug resistant partial complex seizure. Behav Sci (Basel). 2018;8(6): 59 (16 pages). doi: 10.3390/bs8060059.
  • Almaguer-Melián W, Bergado-Rosado JA. Interacciones entre el hipocampo y la amígdala en procesos de plasticidad sináptica. Una clave para entender las relaciones entre motivación y memoria. Rev Neurol. 2002;35:586–93.
  • Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 2012;122:1377–92.
  • Hong Y, Shen C, Yin Q, Sun M, Ma Y, Liu X. Effects of RAGE-specific inhibitor FPS-ZM1 on amyloid-β metabolism and AGEs-induced inflammation and oxidative stress in rat hippocampus. Neurochem Res. 2016;41:1192–9.
  • Guerrero AL, Dorado-Martínez C, Rodriguez A, Pedroza Ríos K, Borgonio-Pérez G, Rivas-Arancibia S. Effects of vitamin E on ozone-induced memory deficits and lipid peroxidation in rats. Neuroreport. 1999;10:1689–92.
  • Rivas-Arancibia S, Dorado-Martínez C, Borgonio-Pérez G, Hiriart-Urdanivia M, Verdugo-Diaz L, Durán-Vázquez A, et al. Effects of taurine on ozone-induced memory deficits and lipid peroxidation levels in brains of young, mature, and old rats. Environ Res. 2000;82:7–17.
  • Di Lorenzo A, Sobolev AP, Nabavi SF, Sureda A, Moghaddam AH, Khanjani S, et al. Post-stroke depression: antidepressive effects of a chemically characterized maqui berry extract in a mouse model (Aristotelia chilensis (molina) stuntz). Food Chem Toxicol. 2019;129:434–43. doi:10.1016/j.fct.2019.04.023.
  • Romanucci V, D’Alonzo D, Guaragna A, Di Marino C, Davinelli S, Scapagnini G, et al. Bioactive compounds of Aristotelia chilensis Stuntz and their pharmacological effects. Curr Pharm Biotechnol. 2016;17:513–23.
  • Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules. 2013;18:9949–65.
  • Currais A, Prior M, Dargusch R, Armando A, Ehren J, Schubert D, et al. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice. Aging Cell. 2014;13:379–90.
  • Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci. 2018;13:12–23.
  • Ali T, Kim T, Rehman SU, Khan MS, Amin FU, Khan M, et al. Natural dietary supplementation of anthocyanins via PI3 K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of Alzheimer’s disease. Mol Neurobiol. 2018;55:6076–93.
  • Saw CL, Guo Y, Yang AY, Paredes-Gonzalez X, Ramirez C, Pung D, et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem Toxicol. 2014;72:303–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.