Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 24, 2021 - Issue 8
609
Views
5
CrossRef citations to date
0
Altmetric
Review

Impact of vitamin deficiency on microbiota composition and immunomodulation: relevance to autistic spectrum disorders

, , &

References

  • Kanner L. Autistic disturbances of affective contact. Nerv Child. 1943;2(3):217–50.
  • Critchfield JW, Van Hemert S, Ash M, Mulder L, Ashwood P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract. 2011;2011:1–9.
  • Spooren W, Lindemann L, Ghosh A, Santarelli L. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci. 2012;33(12):669–84.
  • Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R. Why are autism spectrum conditions more prevalent in males? PLoS Biol. 2011;9(6):1–10.
  • Zerbo O, Qian Y, Yoshida C, Grether JK, Water JVD, Croen LA. Maternal infection during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2016;45(12):4015–25.
  • Poon K, Leibowitz SF. Consumption of substances of abuse during pregnancy increases consumption in offspring: possible underlying mechanisms. Front Nutr. 2016;3(11):1–13.
  • Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Ritz B, et al. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the charge study. Environ Health Perspect. 2014;122(10):1103–09.
  • Carter CJ, Blizard RA. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem Int. 2016;101:83–109.
  • Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713–17.
  • Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509–18.
  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS. 2011;108(38):16050–55.
  • Kang V, Wagner GC, Ming X. Gastrointestinal dysfunction in children with autism spectrum disorders. Autism Res. 2014;7(4):501–06.
  • Pusponegoro HD, Ismael S, Sastroasmoro S, Firmansyah A, Vandenplas Y. Maladaptive behavior and gastrointestinal disorders in children with autism spectrum disorder. Pediatr Gastroenterol Hepatol Nutr. 2015;18(4):230–37.
  • Hsiao EY. Gastrointestinal issues in autism spectrum disorder. Harv Rev Psychiatry. 2014;22(2):104–11.
  • Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci. 2013;70(1):55–69.
  • Rogers GB, Keating DJ, Young RL, Wong M-L, Licinio J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry. 2016;21(6):738–48.
  • Wang M, Monaco MH, Donovan SM. Impact of early gut microbiota on immune and metabolic development and function. Semin Fetal Neonatal Med. 2016;21(6):380–87.
  • Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory towards an understanding of the human microbiome. Science. 2014;336(6086):1255–62.
  • Pereira C, Berry D. Microbial nutrient niches in the gut. Environ Microbiol. 2017;19(4):1366–78.
  • Biesalski HK. Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci. 2016;1372(1):53–64.
  • Jin D, Wu S, Zhang Y, Lu R, Xia Y, Dong H, et al. Lack of vitamin D receptor causes dysbiosis and changes the functions of the murine intestinal microbiome. Clin Ther. 2015;37(5):996–1009.
  • Ohsaki Y, Shirakawa H, Hiwatashi K, Furukawa Y, Mizutani T, Komai M. Vitamin K suppresses lipopolysaccharide-induced inflammation in the rat. Biosci Biotechnol Biochem. 2006;70(4):926–32.
  • Hibberd MC, Wu M, Rodionov DA, Li X, Cheng J, Griffin NW, et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci Transl Med. 2017;9(390):1–17.
  • Leblanc JG, Milani C, Giori GSD, Sesma F, Sinderen DV, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160–68.
  • González FH, Visentin S. Micronutrients and neurodevelopment: an update. Arch Argent Pediatr. 2016;114(6):570–75.
  • Polavarapu A, Hasbani D. Neurological complications of nutritional disease. Semin Pediatr Neurol. 2017;24(1):70–80.
  • Kałużna-Czaplińska J, Jóźwik-pruska J. Nutritional strategies and personalized diet in autism-choice or Necessity? Trends Food Sci Technol. 2016;49:45–50.
  • Liu X, Liu J, Xiong X, Yang T, Hou N, Liang J, et al. Correlation between nutrition and symptoms: nutritional survey of children with autism. Nutrients. 2016;8(294):1–15.
  • Bandini LG, Anderson SE, Curtin C, Cermak S, Otr L, Evans EW, et al. Food selectivity in children with autism spectrum disorders and typically developing children. J Pediatr. 2010;157(2):259–64.
  • Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007;8(10):755–65.
  • Janesick A, Cherie S, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci. 2015;72(8):1559–76.
  • Lee LMY, Leung C, Tang WWC, Choi H, Leung Y, Mccaffery PJ. A paradoxical teratogenic mechanism for retinoic acid. PNAS. 2012;109(34):13668–73.
  • Hu VW. Is retinoic acid-related orphan receptor-alpha (RORA) a target for gene–environment interactions contributing to autism? Neurotoxicology. 2012;33(6):1434–35.
  • Wang Y, Chen J, Du C, Li C, Huang C, Dong Q. Characterization of retinoic acid – induced neurobehavioral effects in developing zebrafish. Environ Toxicol Chem. 2014;33(2):431–37.
  • Williams G, King J, Cunningham M, Stephan M, Kerr B, Hersh JH. Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol. 2001;43(3):202–06.
  • Stodgell CJ, Ingram JL, Bara MO, Tisdale BK, Nau H, Rodier PM. Induction of the homeotic gene HOXA-1 through valproic acid’s teratogenic mechanism of action. Neurotoxicol Teratol. 2006;28(5):617–24.
  • Tashiro Y, Oyabu A, Imura Y, Uchida A, Narita N, Narita M. Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies. Int J Dev Neurosci. 2011;29(4):359–64.
  • Hu VW, Sarachana T, Sherrard RM, Kocher KM. Investigation of sex differences in the expression of RORA and its transcriptional targets in the brain as a potential contributor to the sex bias in autism. Mol Autism. 2015;6(7):1–19.
  • Guo M, Zhu J, Yang T, Lai X, Lei Y, Chen J, et al. Vitamin A and vitamin D deficiencies exacerbate symptoms in children with autism spectrum disorders. Nutr Neurosci. 2018; 22(9):637–647.
  • Zhang Y, Hodgson NW, Trivedi MS, Abdolmaleky HM. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS One. 2016;11(1):1–19.
  • Pepper MR, Black MM. B12 in fetal development. Semin Cell Dev Biol. 2011;22(6):619–23.
  • Dror DK, Allen LH. Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr Rev. 2008;66(5):250–55.
  • Raghavan R, Riley AW, Volk H, Caruso D, Hironaka L, Sices L, et al. Maternal multivitamin intake, plasma folate and vitamin B12 levels and autism spectrum disorder risk in offspring. Paediatr Perinat Epidemiol. 2018;32(1):100–11.
  • Lowe TL, Cohen DJ, Miller S, Young JG. Folic acid and B12 in autism and neuropsychiatric disturbances of childhood. J Am Acad Child Psychiatry. 1981;20(1):104–11.
  • Hendren RL, James SJ, Widjaja F, Lawton B, Rosenblatt A, Bent S. Randomized, placebo-controlled trial of methyl B12 for children with autism. J Child Adolesc Psychopharmacol. 2016;26(9):774–83.
  • Al-Farsi YM, Waly MI, Deth RC, Al-Sharbati MM, Al-Shafaee M, Al-Farsi O, et al. Low folate and vitamin B12 nourishment is common in Omani children. Nutrition. 2013;29(3):537–41.
  • Eyles D, Burne T, Mcgrath J. Vitamin D in fetal brain development. Semin Cell Dev Biol. 2011;22(6):629–36.
  • Saccone D, Asani F, Bornman L. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene. 2015;561(2):171–80.
  • Ali A, Cui X, Eyles D. Developmental vitamin D deficiency and autism: putative pathogenic mechanisms. J Steroid Biochem Mol Biol. 2018;175:108–18.
  • Cannell JJ. Autism and vitamin D. Med Hypotheses. 2008;70(4):750–59.
  • Magnusson C, Lundberg M, Lee BK, Rai D, Karlsson H, Gardner R, et al. Maternal vitamin D deficiency and the risk of autism spectrum disorders: population-based study. Br J Psychiatry. 2016;2(2):170–72.
  • Lv Z, Wang Y, Yang T, Zhan X, Li Z, Hu H, et al. Vitamin A deficiency impacts the structural segregation of gut microbiota in children with persistent diarrhea. J Clin Biochem Nutr. 2016;59(2):113–21.
  • Cha H, Chang S, Chang J. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J Immunol. 2010;184(12):6799–806.
  • Amit-romach E, Uni Z, Cheled S, Berkovich Z, Reifen R. Bacterial population and innate immunity-related genes in rat gastrointestinal tract are altered by vitamin A deficient diet. J Nutr Biochem. 2009;20(1):70–77.
  • Degnan PH, Barry NA, Mock KC, Taga ME, Goodman AL. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe. 2014;15(1):47–57.
  • Karl JP, Meydani M, Barnett JB, Vanegas SM, Barger K, Fu X, et al. Fecal concentrations of bacterially derived vitamin K forms are associated with gut microbiota composition but not plasma or fecal cytokine concentrations in healthy adults. Am J Clin Nutr. 2017;106(4):1052–61.
  • Tamura J, Kubota K, Murakami H, Sawamura M, Matsushima T, Tamura T, et al. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin Exp Immunol. 1999;116(1):28–32.
  • Al-daghri NM, Rahman S, Sabico S, Yakout S, Mcternan PG, Alokail MS. Association of vitamin B12 with pro-inflammatory cytokines and biochemical markers related to cardiometabolic risk in Saudi subjects. Nutrients. 2016;8(9):1–8.
  • Yu S, Bruce D, Froicu M, Weaver V, Cantorna MT. Failure of T cell homing, reduced CD4/CD8αα intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. PNAS. 2008;105(52):20834–39.
  • Ibbs S, Muhammed R. Vitamin B12 deficiency is common in children with ulcerative colitis as well Crohn’s disease. Gut. 2017;66(Suppl 2):S1–2.
  • Kuwabara A, Tanaka K, Tsugawa N, Nakase H, Tsuji H, Shide K, et al. High prevalence of vitamin K and D deficiency and decreased BMD in inflammatory bowel disease. Osteoporos Int. 2009;20(6):935–42.
  • Andrea D, De Abreu F, Nivet E, Baril N, Khrestchatisky M, Umr N, et al. Developmental vitamin D deficiency alters learning in C57Bl/6J mice. Behav Brain Res. 2010;208(2):603–08.
  • Eyles D, Almeras L, Benech P, Patatian A, Mackay-sim A. Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J Steroid Biochem Mol Biol. 2007;103(3-5):538–45.
  • Hawes JE, Tesic D, Whitehouse AJ, Zosky GR, Smith JT, Wyrwoll CS. Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res. 2015;286:192–200.
  • Feng J, Shan L, Du L, Wang B, Li H, Wang W, et al. Clinical improvement following vitamin D3 supplementation in autism spectrum disorder. Nutr Neurosci. 2016;20(5):284–90.
  • Fernell E, Bejerot S, Westerlund J, Miniscalco C, Simila H, Eyles D, et al. Autism spectrum disorder and low vitamin D at birth: a sibling control study. Mol Autism. 2015;6(3):1–9.
  • Saad K, Abdel-rahman AA, Elserogy YM, Cannell JJ, Bjørklund G, Abdel-reheim MK, et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci. 2015;19(8):346–51.
  • Schmitt L, Heiss CJ, Campbell EE. A comparison of nutrient intake and eating behaviors of boys with and without autism. Top Clin Nutr. 2008;23(1):23–31.
  • Adams JB, Audhya T, Mcdonough-means S, Rubin RA, Quig D, Geis E, et al. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond). 2011;8(34):1–32.
  • Cocchetto D, Miller D, Miller L, Bjornsson T. Behavioral perturbations in the vitamin K deficient rat. Physiol Behav. 1985;34(5):727–34.
  • Balta B, Gumus H, Bayramov R, Korkmaz K, Murat B. Increased vitamin D receptor gene expression and rs11568820 and rs4516035 promoter polymorphisms in autistic disorder. Mol Biol Rep. 2018;45(4):541–46.
  • Cieślińska A, Kostyra E, Chwała B, Moszyńska-Dumara M, Fiedorowicz E, Teodorowicz MSH. Vitamin D receptor gene polymorphisms associated with childhood autism. Brain Sci. 2017;7(9):1–12.
  • Ali A, Cui X, Alexander S, Eyles D. The placental immune response is dysregulated developmentally vitamin D deficient rats: Relevance to autism. J Steroid Biochem Mol Biol. 2018;180:73–80.
  • Zhang Z, Li S, Yu L, Liu J. Polymorphisms in vitamin D receptor genes in association with childhood autism spectrum disorder. Dis Markers. 2018;2018:1–7.
  • Clark A, Mach N. Role of vitamin D in the hygiene hypothesis: the interplay between vitamin D, vitamin D receptors, gut microbiota, and immune response. Front Immunol. 2016;7(627):1–12.
  • Wei H, Alberts I, Li X. Brain IL-6 and autism. Neuroscience. 2013;252:320–25.
  • Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation. 2011;8(1):1–10.
  • Gentile I, Zappulo E, Militerni R, Pascotto A, Borgia G, Bravaccio C. Etiopathogenesis of autism spectrum disorders: fitting the pieces of the puzzle together. Med Hypotheses. 2013;81(1):26–35.
  • Wong H, Hoeffer C. Maternal IL-17A in autism. Exp Neurol. 2019;299:228–40.
  • Kim V, Hoeffer CA, Littman DR, Huh JR. The maternal interleukin-17a pathway in mice promotes autism like phenotypes in offspring. Science. 2016;351(6276):933–39.
  • Lombardo MV, Moon HM, Su J, Palmer TD, Courchesne E, Pramparo T. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol Psychiatry. 2018;23(4):1001–13.
  • Careaga M, Murai T, Bauman MD. Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry. 2017;81(5):391–401.
  • Zhang M, Cheng K, Rope R, Martin E, Jetmalani A. Do children with mental disorders have higher prevalence of hypovitaminosis D? F1000 Res. 2013;159(2):1–8.
  • Kočovská E, Gaughran F, Krivoy A, Meier UC. Vitamind deficiency as a potential environmental risk factor in multiple sclerosis, schizophrenia, and autism. Front Psychiatry. 2017;8(47):1–11.
  • Muscogiuri G, Altieri B, Annweiler C, Balercia G, Barbara HBP, John JB, et al. Vitamin D and chronic diseases: the current state of the art. Arch Toxicol. 2016;91(1):97–107.
  • Ferland G. Vitamin K and the nervous system: an overview. Adv Nutr. 2012;3(2):204–12.
  • Cooke G, Behan J, Costello M. Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora. Microb Ecol Health Dis. 2009;18(3-4):133–38.
  • Desoto MC. Speculations on vitamin K, VKORC1 genotype and autism. Med Hypotheses. 2016;96:30–3.
  • Mora R, Iwata M, Von Andrian U. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008;8(9):685–98.
  • Partearroyo T, Úbeda N, Montero A, Achón M, Varela-moreiras G. Vitamin B12 and folic acid imbalance modifies NK cytotoxicity, lymphocytes B and lymphoprolipheration in aged rats. Nutrients. 2013;5(12):4836–48.
  • Shea MK, Booth SL, Massaro JM, Jacques PF, Ralph B, Ordovas M, et al. Vitamin K and vitamin D status: associations with inflammatory markers in the Framingham offspring study. Am J Epidemiol. 2007;167(3):313–20.
  • Kau AL, Philip P, Nicholas W, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–36.
  • Luthold RV, Fernandes GR, Carolina A, Moraes FD, Folchetti LGD, Ferreira SRG. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism. 2017;69:76–86.
  • Madan JC, Farzan SF, Hibberd PL, Karagas MR. Normal neonatal microbiome variation in relation to environmental factors, infection and allergy. Curr Opin Pediatr. 2012;24(6):753–59.
  • Wyatt J, Vogelsang H, Hubl W, Waldhoer T, Lochs H. Intestinal permeability and the prediction of relapse in Crohr’s disease. Lancet. 1993;341(8858):1437–39.
  • Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J, Serino M, et al. Intestinal permeability – A new target for disease prevention and therapy. BMC Gastroenterol. 2014;14(189):1–25.
  • Nowak JK, Grzybowska-Chlebowczyk U, Landowski P, Szaflarska-Poplawska A, Klincewicz B, Adamczak D, et al. Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel disease. Sci Rep. 2014;4(4768):1–4.
  • Wang S, Hibberd ML, Pettersson S, Lee YK. Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways. PLoS One. 2014;9(5):1–12.
  • Czepiel J, Biesiada G, Brzozowski T, Perucki W, Birczynska M, Jurczyszyn A, et al. The role of local and systemic cytokines in patients infected with Clostridium Difficile. J Physiol Pharmacol. 2014;65(5):695–703.
  • Carvalho FA, Koren O, Goodrich JK, Johansson MEV, Nalbantoglu I, Aitken JD, et al. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe. 2012;12(2):139–52.
  • Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philos Trans R Soc B. 2016;371(1707):1–9.
  • Bloom SM, Bijanki VN, Nava GM, Sun L, Malvin NP, Donermeyer DL, et al. Commensal bacteroides species induce colitis in host genotype specific fashion in a mouse model of inflammatory bowel disease. Cell Host Microbe. 2011;9(5):390–403.
  • De Angelis M, Francavilla R, Piccolo M, Giacomo AD. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015;6(3):207–13.
  • Benach JL, Li E, Mcgovern MM. A microbial association with Autism. MBio. 2012;3(1):1–3.
  • Kang DW, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB, et al. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8(7):1–8.
  • Iovene MR, Bombace F, Maresca R, Sapone A, Iardino P, Picardi A, et al. Intestinal dysbiosis and deast isolation in stool of subjects with autism spectrum disorders. Mycopathologia. 2017;182(3-4):349–63.
  • Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 2011;77(18):6718–21.
  • De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8(10):1–18.
  • Burger RA, Warren RP. Possible immunogenetic basis for autism. Dev Disabil Res Rev. 1998;4(2):137–41.
  • Edmiston E, Ashwood P, Van de Water J. Autoimmunity, autoantibodies, and autism spectrum disorder. Biol Psychiatry. 2017;81(5):383–90.
  • Goines P, Van de Water J. The immune system’s role in the biology of autism. Curr Opin Neurol. 2011;23(2):111–7.
  • Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol. 2013;36(916):67–81.
  • Goldani AA, Downs SR, Widjaja F, Lawton B, Hendren RL. Biomarkers in autism. Front Psychiatry. 2014;5(100):1–13.
  • Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci. 2012;57(8):2096–102.
  • Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells: possible relevance to autism spectrum disorders. PLoS One. 2014;9(8):1–16.
  • Emanuele E, Orsi P, Boso M, Broglia D, Brondino N, Barale F, et al. Low-grade endotoxemia in patients with severe autism. Neurosci Lett. 2010;471(3):162–65.
  • Macfabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis. 2012;23(1):1–25.
  • McAllister AK, Van de Water J. Breaking boundaries in neural-immune interactions. Neuron. 2016;64(1):9–12.
  • Banks WA, Erickson MA. The blood-brain barrier and immune function and dysfunction. Neurobiol Dis. 2010;37(1):26–32.
  • Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM, et al. Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 2016;7(49):1–17.
  • Pardo CA, Vargas DL, Zimmerman AW. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry. 2005;17(6):485–95.
  • Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, et al. Microglia in the cerebral cortex in autism. J Autism Dev Disord. 2012;42(12):2569–84.
  • Young AMH, Chakrabarti B, Roberts D, Lai M-C, Suckling J, Baron-Cohen S. From molecules to neural morphology: understanding neuroinflammation in autism spectrum condition. Mol Autism. 2016;7(9):1–8.
  • Bilimoria PM, Stevens B. Microglia function during brain development: new insights from animal models. Brain Res. 2015;1617:7–17.
  • Gee JR, Keller JN. Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int J Biochem Cell Biol. 2005;37(6):1145–50.
  • Courchesne E, Pierce K. Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci. 2005;23(2–3):153–70.
  • Liu J, Liu X, Xiong X, Yang T, Cui T, Hou N, et al. Effect of vitamin A supplementation on gut microbiota in children with autism spectrum disorders - a pilot study. BMC Microbiol. 2017;17(204):1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.