Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 5
575
Views
4
CrossRef citations to date
0
Altmetric
Review

Vitamins: a nutritional intervention to modulate the Alzheimer’s disease progression

References

  • Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2012;8:131–68.
  • Alzheimer’s Association. Alzheimer’s disease facts and figures. Chicago (IL); 2018. Available from: https://www.alz.org/alzheimers-dementia/facts-figures.
  • Bachurin SO, Bovina EV, Ustyugov AA. Drugs in clinical trials for Alzheimer’s disease: the major trends. Med Res Rev. 2017;37:1186–225.
  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44.
  • Alam J, Jaiswal V, Sharma L. Screening of antibiotics against β-amyloid as anti-amyloidogenic agents. A drug repurposing approach. Curr Comput-Aid Drug. 2020. doi:https://doi.org/10.2174/1573409916666200703171732.
  • Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci. 2016;17:777–92.
  • Godoy JA, Rios JA, Zolezzi JM, Braidy N, Inestrosa NC. Signaling pathway cross talk in Alzheimer’s disease. Cell Comm Signaling. 2014;12:23.
  • Cioanca O, Hancianu M, Mihasan M, Hritcu L. Antiacetylcholinesterase and antioxidant activities of inhaled juniper oil on amyloid beta (1–42)-induced oxidative stress in the rat hippocampus. Neurochem Res. 2015;40:952–60.
  • E Abdel Moneim ⍰.. Oxidant/antioxidant imbalance and the risk of Alzheimer's disease. Curr Alzheimer Res. 2015;12:335–49.
  • Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013;9:25–34.
  • Arimon M, Takeda S, Post KL, Svirsky S, Hyman BT, Berezovska O. Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol Dis. 2015;84:109–19.
  • Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10:819–28.
  • Schrijvers EM, Witteman JC, Sijbrands EJ, Hofman A, Koudstaal PJ, Breteler MM. Insulin metabolism and the risk of Alzheimer disease: the Rotterdam Study. Neurology. 2010;75:1982–7.
  • Martins IJ, Hone E, Foster JK, Sunram-Lea SI, Gnjec A, Fuller SJ, et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry. 2006;11:721–36.
  • Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, et al. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302:627–37.
  • Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol. 2006;59:912–21.
  • Burgener SC, Buettner L, Coen Buckwalter K, Beattie E, Bossen AL, Fick DM, et al. Evidence supporting nutritional interventions for persons in early stage Alzheimer’s disease (AD). J Nutr Health Aging. 2008;12:18–21.
  • Bryan J, Calvaresi E, Hughes D. Short-term folate, vitamin B12 or vitamin B6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr. 2002;132:1345–56.
  • Solfrizzi V, Colacicco AM, D’Introno A, Capurso C, Parigi AD, Capurso SA, et al. Dietary fatty acids intakes and rate of mild cognitive impairment. The Italian longitudinal study on aging. Exp Gerontol. 2006;41:619–27.
  • Dangour AD, Whitehouse PJ, Rafferty K, Mitchell SA, Smith L, Hawkesworth S, et al. B-Vitamins and fatty acids in the prevention and treatment of Alzheimer’s disease and dementia: a systematic review. J Alzheimers Dis. 2010;22:205–24.
  • Lanska DJ. Chapter 30: historical aspects of the major neurological vitamin deficiency disorders: the water-soluble B vitamins. Handb Clin Neurol. 2010;95:445–76.
  • Hopkins FG. Feeding experiments illustrating the importance of accessory factors in normal dietaries. J Physiol. 1912;44:425–60.
  • Scheltens P, Twisk JW, Blesa R, Scarpini E, von Arnim CA, Bongers A, et al. Efficacy of sSouvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. J Alzheimers Dis. 2012;31:225–36.
  • Luchsinger JA, Mayeux R. Dietary factors and Alzheimer’s disease. Lancet Neurol. 2004;3:579–87.
  • Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006;5:949–60.
  • Kamphuis PJ, Scheltens P. Can nutrients prevent or delay onset of Alzheimer’s disease? J Alzheimers Dis. 2010;20:765–75.
  • Aisen PS, Schneider LS, Sano M, Diaz-Arrastia R, Dyck C, Weiner MF, et al. High-dose B vitamins supplementation and cognitive decline in Alzheimer’s disease: a randomized controlled trial. JAMA. 2008;300:1774–83.
  • Huskisson E, Maggini S, Ruf M. The influence of micronutrients on cognitive function and performance. J Int Med Res. 2007;35:1–19.
  • Raichle ME, Gusnard DA. Appraising the brain’s energy budget. PNAS. 2002;99:10237–9.
  • Malinin NL, West XZ, Byzova TV. Oxidation as “the stress of life”. Aging (Albany NY). 2011;3:906–10.
  • Ortega RM, Requejo AM, Andres P, Lopez-Sobaler AM, Quintas ME, Redondo MR, et al. Dietary intake and cognitive function in a group of elderly people. Am J Clin Nutr. 1997;66:803–9.
  • Gray SL, Hanlon JT, Landerman LR, Artz M, Schmader KE, Fillenbaum GG. Is antioxidant use protective of cognitive function in the community-dwelling elderly? Am J Geriatr Pharmacother. 2003;1:3–10.
  • Meertens L, Solano L. Vitamin B12, folic acid and mental function in the elderly. Invest Clin. 2005;46:53–63.
  • Greenwood CE, Winocur G. Decline in cognitive function with aging: impact of diet. Mature Med. 1999;2:205–9
  • Raskind M. Nutrition and cognitive function in the elderly. JAMA. 1983;249:2939–40.
  • Paulionis L, Kane S, Meckling KA. Vitamin status and cognitive function in a long-term care population. BMC Geriatr. 2005;5:1–16
  • Sommer A, West KP. Vitamin a deficiency: health, survival and vision. Oxford: Oxford University Press; 1996.
  • Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007;8:755–65.
  • Goodman AB, Pardee AB. Evidence for defective retinoid transport and function in late onset Alzheimer’s disease. PNAS. 2003;100:2901–5.
  • Kapoor A, Wang BJ, Hsu WM, Chang MU, Liang SM, Liao YF. Retinoic acid-elicited RARα/RXRα signaling attenuates Aβ production by directly inhibiting γ-secretase-mediated cleavage of amyloid precursor protein. ACS Chem Neurosci. 2013;4:1093–100.
  • Corcoran JP, So PL, Maden M. Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci. 2004;20:896–902.
  • Misner DL, Jacobs S, Shimizu Y, de Urquiza AM, Solomin L, Perlmann T, et al. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. PNAS. 2001;98:11714–9.
  • Hou N, Ren L, Gong M, Bi Y, Gu Y, Dong Z, et al. Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor Alpha. Mol Neurobiol. 2015;51:633–47.
  • Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, et al. Marginal Vitamin A deficiency facilitates Alzheimer’s pathogenesis. Acta Neuropathol. 2017;133:967–82.
  • Global prevalence of vitamin A deficiency in populations at risk 1995–2005: WHO Global Database on Vitamin A Deficiency. WHO; 2009.
  • Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, et al. Plasma nutrient status of patients with Alzheimer’s disease: systematic review and meta-analysis. Alzheimers Dement. 2014;10:485–502.
  • Jama JW, Launer LJ, Witteman JC, den Breeijen JH, Breteler MM, Grobbee DE, et al. Dietary antioxidants and cognitive function in a population-based sample of older persons. The Rotterdam Study. Am J Epidemiol. 1996;144:275–80.
  • Goncalves MB, Clarke E, Hobbs C, Malmqvist T, Deacon R, Jack J, et al. Amyloid beta inhibits retinoic acid synthesis exacerbating Alzheimer disease pathology which can be attenuated by an retinoic acid receptor alpha agonist. Eur J Neurosci. 2013;37:1182–92.
  • Reinhardt S, Grimm MO, Stahlmann C, Hartmann T, Shudo K, Tomita T, et al. Rescue of hypovitaminosis a induces non-amyloidogenic amyloid precursor protein (APP) processing. Curr Alzheimer Res. 2016;13:1277–89.
  • Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr Neurosci. 2002;5:291–309.
  • Brown J, Bianco JI, McGrath JJ, Eyles DW. 1,25-Dihydroxyvitamin d3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci. Lett. 2003;343:139–43.
  • Martin A. Antioxidant Vitamins E and C and risk of Alzheimer’s disease. Nutr Rev. 2003;61:69–73.
  • Kiely A, Ferland G, Ouliass B, O’Toole PW, Purtill H, O’Connor EM. Vitamin K status and inflammation are associated with cognition in older Irish adults. Nutr Neurosci. 2020;23:591–9.
  • Dauncey MJ. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients. 2013;5:887–914.
  • Bottiglieri T. Homocysteine and folate metabolism in depression. Prog Neuro-Psychoph. 2005;29:1103–12.
  • Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004;50:3–32.
  • Smith AD. The worldwide challenge of the dementias: a role for B vitamins and homocysteine? Food Nutr Bull. 2008;29:S143–72.
  • Oulhaj A, Refsum H, Beaumont H, Williams J, King E, Jacoby R, et al. Homocysteine as a predictor of cognitive decline in Alzheimer’s disease. Int J Geriatr Psychiatry. 2010;25:82–90.
  • Douauda G, Refsum H, de Jagerc CA, Jacobye R, Nicholsa TE, Smitha SM, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. PNAS. 2013;110:9523–8.
  • Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, et al. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment. A randomized controlled trial. PLoS ONE. 2010;5:e12244.
  • Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27:592–600.
  • Zhang DM, Ye JX, Mu JS, Cui XP. Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases: a systematic review and meta-analysis. J Geriatr Psych Neur. 2017;30:50–9.
  • Cockroft DL. Vitamin deficiencies and neural-tube defects: human and animal studies. Hum Reprod. 1991;6:148–57.
  • Sechi GP, Sechi E, Fois C, Kumar N. Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults. Nutr Rev. 2016;74:281–300.
  • Smith AP, Clark RE, Nutt DJ, Haller J, Hayward SG, Perry K. Vitamin C, mood and cognitive functioning in the elderly. Nutr Neurosci. 1999;2:249–56.
  • Vesely DL. Biotin enhances guanylate cyclase activity. Science. 1982;216:1329–30.
  • Drora V, Rehavia M, Bitonb IE, Eliash S. Rasagiline prevents neurodegeneration in thiamine deficient rats – A longitudinal MRI study. Brain Res. 2014;1557:43–54.
  • Ciccia RM, Langlais PJ. An examination of the synergistic interaction of ethanol and thiamine deficiency in the development of neurological signs and long-term cognitive and memory impairments. Alcohol Clin Exp Res. 2000;24:622–34.
  • Karuppagoundera SS, Xua H, Shia Q, Chena LH, Pedrinib S, Pechmana D, et al. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model. Neurobiol Aging. 2009;30:1587–600.
  • Pan X, Gong N, Zhao J, Yu Z, Gu F, Chen J, et al. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain. 2010;133:1342–51.
  • Markova N, Bazhenova N, Anthony DC, Vignisse J, Svistunov A, Lesch KP, et al. Thiamine and benfotiamine improve cognition and ameliorate GSK-3β associated stress-induced behaviours in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2017;75:148–56.
  • Suzuki K, Yamada K, Fukuhara Y, Tsuji A, Shibata K, Wakamatsu N. High-dose thiamine prevents brain lesions and prolongs survival of Slc19a3-deficient mice. PLoS One. 2017;12:e0180279.
  • Pepersack T, Garbusinski J, Robberecht J, Beyer I, Willems D, Fuss M. Clinical relevance of thiamine status amongst hospitalized elderly patients. Gerontology. 1999;45:96–101.
  • Gibson GE. Benfotamine in Alzheimer’s disease: a pilot study. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02292238.
  • Koh F, Charlton K, Walton K, McMahon AT. Role of dietary protein and thiamine intakes on cognitive function in healthy older people: a systematic review. Nutrients. 2015;7:2415–39.
  • Moat SJ, Ashfield-Watt PA, Powers HJ, Newcombe RG, McDowell IF. Effect of riboflavin status on the homocysteine-lowering effect of folate in relation to the MTHFR (C677T) genotype. Clin Chem. 2003;49:295–302.
  • Morris MC, Evans DA, Bienias JL, Scherr PA, Tangney CC, Hebert LE, et al. Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J Neurol Neurosurg Psychiatry. 2004;75:1093–9.
  • Malouf R, Grimley EJ. The effect of vitamin B6 on cognition. Cochrane Database Syst Rev. 2003: CD004393.
  • Durga J, van Boxtel MP, Schouten EG, Kok FJ, Jolles J, Katan MB, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomized, double blind, controlled trial. Lancet. 2007;369:208–16.
  • Chen H, Liu S, Ji L, Wu T, Ji Y, Zhou Y, et al. Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: a randomized controlled trial. Mediators Inflamm. 2016;2016:5912146.
  • Malouf R, Grimley EJ. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev. 2008: CD004514.
  • Reminton R, Bechtel C, Larsen D, Samar A, Doshanjh L, Fishman P, et al. A phase II randomized clinical trial of a nutritional formulation for cognition and mood in Alzheimer’s disease. J Alzheimers Dis. 2015;45:395–405.
  • Eussen SJ, de Groot LC, Joosten LW, Bloo RJ, Clarke R, Ueland PM, et al. Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: a randomized, placebo-controlled trial. Am J Clin Nutr. 2006;84:361–70.
  • Kwok T, Lee J, Ma RC, Wong SY, Kung K, Lam A, et al. A randomized placebo controlled trial of vitamin B12 supplementation to prevent cognitive decline in older diabetic people with borderline low serum vitamin B12. Clin Nutr. 2017;36:1509–15.
  • Arlt S, Muller-Thomsen T, Beisiegel U, Kontush A. Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer’s disease. Neurochem Res. 2012;37:2706–14.
  • Annweiler C, Fantino B, Parot-Schinkel E, Thiery S, Gautier J, Beauchet O. Alzheimer’s disease - input of vitamin D with mEmantine assay (AD-IDEA trial): study protocol for a randomized controlled trial. Trials. 2011;12:230.
  • Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, et al. A controlled trial of Selegiline, Alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's disease cooperative study. N Engl J Med. 1997;336:1216–22.
  • Morris MC, Beckett LA, Scherr PA, Hebert LE, Bennett DA, Field TS, et al. Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord. 1998;12:121–6.
  • ter Borg S, Verlaan S, Hemsworth J, Mijnarends DM, Schols JM, Luiking YC, et al. Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. Br J Nutr. 2015;113:1195–206.
  • Udhayabanu T, Manole A, Rajeshwari M, Varalakshmi P, Houlden H, Ashokkumar B. Riboflavin responsive mitochondrial dysfunction in neurodegenerative diseases. J Clin Med. 2017;6:52.
  • Jylling B. B2-avitaminose (curled-toe paralysis) hos kyllinger. Nord Vet Med. 1971;23:253–9.
  • Kolbuszewski T. Nervous system disturbances in chickens in the background of riboflavin deficiency in the diet. Pol Arch Med Wewn. 1971;14:563–75.
  • Johnson WD, Storts RW. Peripheral neuropathy associated with dietary riboflavin deficiency in the chicken I. light microscopic study. Vet. Pathol. 1988;25:9–16.
  • Manole A, Jaunmuktane Z, Hargreaves I, Ludtmann MH, Salpietro V, Bello OD, et al. Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brian. 2017;140:2820–37.
  • Cornelius N, Corydon TJ, Gregersen N, Olsen RK. Cellular consequences of oxidative stress in riboflavin responsive multiple acyl-CoA dehydrogenation deficiency patient fibroblasts. Hum Mol Genet. 2014;23:4285–301.
  • Man PY, Turnbull DM, Chinnery PF. Leber hereditary optic neuropathy. J Med Genet. 2002;39:162–9.
  • Bugiani M, Lamantea E, Invemizzi F, Moroni I, Bizzi A, Zeviani M, et al. Effects of riboflavin in chicken with complex II deficiency. Brain Dev. 2006;28:576–81.
  • Naviaux RK, Nyhan WL, Barshop BA, Poulton J, Markusic D, Karpinski NC, et al. Mitochondrial DNA polymerase gamma deficiency and mtDNA depletion in a child with Alpers’ syndrome. Ann Neurol. 1999;45:54–8.
  • Grad LI, Lemire BD. Riboflavin enhances the assembly of mitochondrial cytochrome c oxidase in C. elegans NADH-ubiquinone oxidoreductase mutants. Biochim Biophys Acta Bioenerg. 2006;1757:115–22.
  • Naghashpour M, Amani R, Sarkaki A, Ghadiri A, Samarbafzadeh A, Jafarirad S, et al. Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis. Iran J Basic Med Sci. 2016;19:439–48.
  • Ray A, Martinez BA, Berkowitz LA, Caldwell GA, Caldwell KA. Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson’s model. Cell Death Dis. 2014;5:e984.
  • Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346:476–83.
  • Kamat PK, Vacek JC, Kalani A, Tyagi N. Homocysteine induced cerebrovascular dysfunction: A link to Alzheimer’s disease etiology. Open Neurol J. 2015;9:9–14.
  • Butterfield DA, Boyd-Kimball D. Amyloid β-peptide1–42 contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol. 2004;14:426–32.
  • Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, et al. Mutant Huntington’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet. 2012;21:406–20.
  • Gottfries CG, Lehmann W, Regland B. Early diagnosis of cognitive impairment in the elderly with the focus on Alzheimer’s disease. J Neural Transm. 1998;105:773–86.
  • Seshadri S. Homocysteine and the risk of dementia. Clin Chem. 2012;58:1059–60.
  • Rue AL, Koehler KM, Wayne SJ, Chiulli SJ, Haaland KY, Garry PJ. Nutritional status and cognitive functioning in a normally aging sample: A 6-y reassessment. Am J Clin Nutr. 1997;65:20–9.
  • Michikawa M. Neurodegenerative disorders and cholesterol. Curr Alzheimer Res. 2004;1:271–5.
  • Rebeck GW. Cholesterol efflux as a critical component of Alzheimer's disease pathogenesis. J Mol Neurosci. 2004;23:219–24.
  • Zhao SP, Yang J, Li J, Dong SZ, Wu ZH. Effect of niacin on LXRalpha and PPARgamma expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits. Int J Cardiol. 2008;124:172–8.
  • Michikawa M. Cholesterol paradox, is high total or low HDL cholesterol level a risk for Alzheimer's disease? J Neurosci Res. 2003;72:141–6.
  • McCddon A, Davis G, Hudson P, Tandy S, Cattell H. Total serum homocysteine in senile dementia of Alzheimer type. Int J Geriatr Psych. 1998;13:235–9.
  • Miller JW. Homocysteine and Alzheimer’s disease. Nutr Rev. 1999;57:126–9.
  • Sreekumaran E, Ramakrishna T, Madhav TR, Anandh D, Prabhu BM, Sulekha S, et al. Loss of dendritic connectivity in CA1, CA2, and CA3 neurons in hippocampus in rat under aluminum toxicity: Antidotal effect of pyridoxine. Brain Res Bull. 2003;59:421–7.
  • Jung HY, Kim DW, Nam SM, Kim JW, Chung JY, Won MH, et al. Pyridoxine improves hippocampal cognitive function via increases of serotonin turnover and tyrosine hydroxylase, and its association with CB1 cannabinoid receptor-interacting protein and the CB1 cannabinoid receptor pathway. Biochim Biophys Acta Gen Subj. 2017;1861:3142–53.
  • Yang X, Qiang X, Li Y, Luo L, Xu R, Zheng Y, et al. Pyridoxine-Resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg Chem. 2017;71:305–14.
  • Rommer PS, Fuchs D, Leblhuber F, Schroth R, Greilberger M, Tafeit E, et al. Lowered levels of carbonyl proteins after vitamin B supplementation in patients with mild cognitive impairment and Alzheimer’s disease. Neurodegener Dis. 2016;16:284–9.
  • Li W, Liu H, Yu M, Zhang X, Zhang M, Wilson JX, et al. Folic acid administration inhibits amyloid β-peptide accumulation in APP/PS1 transgenic mice. J Nutr Biochem. 2015;26:883–91.
  • Li W, Jiang M, Zhao S, Liu H, Zhang X, Wilson JX, et al. Folic acid inhibits amyloid β-peptide production through modulating DNA methyltransferase activity in N2a-APP cells. Int J Mol Sci. 2015;16:25002–13.
  • Figueiredo CP, Bicca MA, Latini A, Prediger RD, Medeiros R, Calixto JB. Folic acid plus α-tocopherol mitigates amyloid-β induced neurotoxicity through modulation of mitochondrial complex activity. J Alzheimer Dis. 2011;24:61–75.
  • Budni J, Molz S, Dal-Cim T, Martín-de-Saavedra MD, Egea J, Lopéz MG, Tasca CI, et al. Folic acid protects against glutamate-induced excitotoxicity in hippocampal slices through a mechanism that implicates inhibition of GSK-3β and iNOS. Mol Neurobiol. 2018;55:1580–9.
  • Chen T, Huang RS, Lin S, Lu J, Tang M, Chiu M. Folic acid Potentiates the effect of memantine on spatial learning and neuronal protection in an Alzheimer’s disease transgenic model. J Alzheimer Dis. 2010;20:607–15.
  • Chen T, Tang M, Chou C, Chiu M, Huang RS. Dose-dependent folic acid and memantine treatments promote synergistic or additive protection against Ab(25–35) peptide-induced apoptosis in SH-SY5Y cells mediated by mitochondria stress-associated death signals. Food Chem Toxicol. 2013;62:538–47.
  • Yoshinaga T, Nishimata H, Kajiya Y, Yokoyama S. Combined assessment of serum folate and hemoglobin as biomarkers of brain amyloid-β accumulation. PLoS One. 2017;12:e0175854.
  • Bito T, Misaki T, Yabuta Y, Ishikawa T, Kawano T, Watanabe F. Vitamin B12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans. Redox Biol. 2017;11:21–9.
  • Malouf R, Areosa Sastre A. Vitamin B12 for cognition. Cochrane Database Syst Rev. 2003: CD004394.
  • Lee Y, Ha J, Park J, Lee B, Moon E, Chung Y, et al. Apolipoprotein E genotype modulates effects of vitamin B12 and homocysteine on grey matter volume in Alzheimer’s disease. Psychogeriatrics. 2016;16:3–11.
  • Vogiatzoglou A, Smith AD, Nurk E, Drevon CA, Ueland PM, Vollset SE, et al. Cognitive function in an elderly population: interaction between vitamin B12 status, depression, and apolipoprotein E ε4: the Hordaland homocysteine study. Psychosom Med. 2013;75:20–9.
  • Köbe T, Witte AV, Schnelle A, Grittner U, Tesky VA, Pantel J, et al. Vitamin B 12 concentration, memory performance,and hippocampal structure in patients with mild cognitive impairment. Am J Clin Nutr. 2016;103:1045–54.
  • Gale CR, Martyn C, Cooper C. Cognitive impairment and mortality in a cohort of elderly people. Br Med J. 1996;312:608–11.
  • Harrison FE, May JM, McDonald MP. Vitamin C deficiency increases basal exploratory activity but decreases scopolamine-induced activity in APP/PSEN1 transgenic mice. Pharmacol Biochem Behav. 2010;94:543–52.
  • Dixit S, Bernardo A, Walker MJ, Kennard JA, Kim GY, Kessler ES, et al. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally-aging mice. ACS Chem Neurosci. 2015;6:570–81.
  • Harrison FE, Hosseini AH, McDonald MP, May JM. Vitamin C reduces spatial learning deficits in middle-aged and very old APP/PSEN1 transgenic and wild-type mice. Pharmacol Biochem Behav. 2009;93:443–50.
  • Murakami K, Murata N, Ozawa Y, Kinoshita N, Irie K, Shirasawa T, et al. Vitamin C restores behavioral deficits and amyloid-β oligomerization without affecting plaque formation in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2011;26:7–18.
  • Ahmad A, Shah SA, Badshah H, Kim MJ, Ali T, Yoon GH, et al. Neuroprotection by vitamin C against ethanol-induced neuroinflammation associated neurodegeneration in the developing Rat brain. CNS Neurol Disord Drug Targets. 2016;15:360–70.
  • Sil S, Ghosh T, Gupta P, Ghosh R, Kabir SN, Roy A. Dual role of vitamin C on the neuroinflammation mediated neurodegeneration and memory impairments in colchicine induced Rat model of Alzheimer disease. J Mol Neurosci. 2016;60:421–35.
  • Chew EY, Clemons TE, Agron E, Launer LJ, Grodstein F, Bernstein PS, et al. Effect of omega-3 fatty acids, Lutein/zeaxanthin, or other nutrient supplementation on cognitive function: the AREDS2 randomized clinical trial. JAMA. 2015;314:791–801.
  • Basambombo LL, Carmichael P, Côté S, Laurin D. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann Pharmacother. 2017;51:118–24.
  • Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab. 2002;13:100–5.
  • Kalueff AV, Tuohimaa P. Neurosteroid hormone vitamin D and its utility in clinical nutrition. Curr Opin Clin Nutr Metab Care. 2007;10:12–9.
  • Sutherland MK, Somerville MJ, Yoong LK, Bergeron C, Haussler MR, McLachlan DR. Reduction of vitamin D hormone receptor mRNA levels in Alzheimer as compared to Huntington hippocampus: correlation with calbindin-28k mRNA levels. Mol Brain Res. 1992;13:239–50.
  • Morello M, Landel V, Lacassagne E, Baranger K, Annweiler C, Féron F, et al. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol Neurobiol. 2018;55:6463–79.
  • Grimm M, Lehmann J, Mett J, Zimmer VC, Grosgen S, Stahlmann CP, et al. Impact of vitamin D on amyloid precursor protein processing and amyloid-β peptide degradation in Alzheimer’s disease. Neurodegener Dis. 2014;13:75–81.
  • Grimm M, Thiel A, Lauer AA, Winkler J, Lehmann J, Regner L, et al. Vitamin D and its analogues decrease amyloid-β (Aβ) formation and increase Aβ-degradation. Int J Mol Sci. 2017;18:2764.
  • Annweiler C, Herrmann FR, Fantino B, Brugg B, Beauchet O. Effectiveness of the combination of memantine Plus vitamin D on cognition in patients With Alzheimer disease: A pre-post pilot study. Cogn Behav Neurol. 2012;25:121–7.
  • Lemire P, Brangier A, Beaudenon M, Duval GT, Annweiler C. Cognitive changes under memantine according to vitamin D status in Alzheimer patients: An exposed/unexposed cohort pilot study. J Steroid Biochem Mol Biol. 2018;175:151–6.
  • Miller JW, Harvey DJ, Beckett LA, Green R, Farias ST, Reed BR, et al. Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurol. 2015;72:1295–303.
  • Pettersen JA. Does high dose vitamin D supplementation enhance cognition?: a randomized trial in healthy adults. Exp Gerontol. 2017;90:90–7.
  • Maddock J, Zhou A, Cavadino A, Kuźma E, Bao Y, Smart MC, et al. Vitamin D and cognitive function: a Mendelian randomisation study. Sci Rep. 2017;7:13230.
  • Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer's disease: a randomised, double-blind, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2019;90:1347–52.
  • Nishida Y, Yokota T, Takahashi T, Uchihara T, Jishage K, Mizusawa H. Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse. Biochem Biophys Res Commun. 2006;350:530–6.
  • Nishida Y, Ito S, Ohtsuki S, Yamamoto N, Takahashi T, Iwata N, et al. Depletion of vitamin E increases amyloid-β accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J Biol Chem. 2009;284:33400–8.
  • Fukui K, Masuda A, Hosono A, Suwabe R, Yamashita K, Shinkai T, et al. Changes in microtubule-related proteins and autophagy in long-term vitamin E-deficient mice. Free Radic Res. 2014;48:649–58.
  • Fukui K, Kawakami H, Honjo T, Ogasawara R, Takastu H, Shinkai T, et al. Vitamin E deficiency induces axonal degeneration in mouse hippocampal neurons. J Nutr Sci Vitaminol. 2012;58:377–83.
  • Sung S, Yao Y, Uryu K, Yang H, Lee V, Trojanowski JQ, et al. Early vitamin E supplementation in young but not aged mice reduces Aβ levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 2004;18:323–5.
  • Conte V, Uryu K, Fujimoto S, Yao Y, Rokach J, Longhi L, et al. Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J Neurochem. 2004;90:758–64.
  • Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, et al. Effect of vitamin E and memantine on Functional decline in Alzheimer disease. The TEAM-AD VA cooperative randomized trial. JAMA. 2014;311:33–44.
  • Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med. 2005;352:2379–88.
  • Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, et al. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol. 2017;74:567–73.
  • Lloret A, Badía M, Mora NJ, Pallardó FV, Alonso M, Viña J. Vitamin E paradox in Alzheimer’s disease: it does not prevent loss of cognition and May even be detrimental. J Alzheimers Dis. 2009;17:143–9.
  • Wang W, Li J, Zhang H, Wang X, Zhang X. Effects of vitamin E supplementation on the risk and progression of AD: a systematic review and meta-analysis. Nutr Neurosci. 2019. doi:https://doi.org/10.1080/1028415X.2019.1585506.
  • Tourbah A, Lebrun-Frenay C, Edan G, Clanet M, Papeix C, Vukusic S, et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: a randomised, double-blind, placebo-controlled study. Mult Scler. 2016;22:1719–31.
  • Miller TW, Isenberg JS, Shih HB, Wang Y, Roberts DD. Amyloid-beta inhibits No-cGMP signaling in a CD36- and CD47-dependent manner. PLoS ONE. 2010;5:e15686.
  • Alam J, Sharma L. Potential enzymatic targets in Alzheimer’s: a comprehensive review. Curr Drug Targets. 2019;20:316–39.
  • Allison AC. The possible role of vitamin K deficiency in the pathogenesis of Alzheimer’s disease and in augmenting brain damage associated with cardiovascular disease. Med Hypotheses. 2001;57:151–5.
  • Soutif-Veillon A, Ferland G, Rolland Y, Presse N, Bouche K, Féar C, et al. Increased dietary vitamin K intake is associated with less severe subjective memory complaint among older adults. Maturitas. 2016;93:131–6.
  • Huy PD, Yu Y, Ngo ST, Thao TV, Chen C, Li MS, et al. In silico and in vitro characterization of anti-amyloidogenic activity of vitamin K3 analogues for Alzheimer's disease. Biochim Biophys Acta. 2013;1830:2960–9.
  • Alam P, Chaturvedi SK, Siddiqi MK, Rajpoot RK, Ajmal MR, Zaman M, et al. Vitamin k3 inhibits protein aggregation: implication in the treatment of amyloid diseases. Sci Rep. 2016;6:26759.
  • Hadipour E, Tayarani-Najaran Z, Fereidoni M. Vitamin K2 protects PC12 cells against Aβ (1-42) and H2O2-induced apoptosis via p38 MAP kinase pathway. Nutr Neurosci. 2020;23:343–52.
  • Presse N, Belleville S, Gaudreau P, Greenwood CE, Kergoat MJ, Morais JA, et al. Vitamin K status and cognitive function in healthy older adults. Neurobiol Aging. 2013;34:2777–83.
  • Sato Y, Honda Y, Hayashida N, Iwamoto J, Kanoko T, Satoh K. Vitamin K deficiency and osteopenia in elderly women with Alzheimer’s disease. Arch Phys Med Rehabil. 2005;86:576–81.
  • Chouet J, Ferland G, Féart C, Rolland Y, Presse N, Boucher K, et al. Dietary vitamin K intake is associated with cognition and behaviour among geriatric patients: the CLIP study. Nutrients. 2015;7:6739–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.