Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 7
729
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Tauroursodeoxycholic acid (TUDCA) is neuroprotective in a chronic mouse model of Parkinson’s disease

, , , , , , , , , & ORCID Icon show all

References

  • Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna). 2017;124(8):901–5.
  • Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.
  • Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006;116(7):1744–54.
  • German DC, Manaye K, Smith WK, Woodward DJ, Saper CB. Midbrain dopaminergic cell loss in Parkinsons-disease – computer visualization. Ann Neurol. 1989;26(4):507–14.
  • Thanvi B, Lo N, Robinson T. Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J. 2007;83(980):384–8.
  • Koo JH, Cho JY. Treadmill Exercise attenuates alpha-synuclein levels by promoting mitochondrial function and autophagy possibly via SIRT1 in the chronic MPTP/P-induced mouse model of Parkinson’s disease. Neurotox Res. 2017. doi:https://doi.org/10.1016/j.neuroscience.2017.05.016.
  • Xu YD, Cui C, Sun MF, Jia XB, Zhu YL, Chu M. Neuroprotective effects of loganin on MPTP-induced Parkinson’s disease mice: neurochemistry, glial reaction and autophagy studies. J Cell. 2017. doi:https://doi.org/10.1002/jcb.26010.
  • Petroske E, Meredith GE, Callen S, Totterdell S, Lau Y-S. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience. 2001;106(3):589–601.
  • Dauer W, Kholodilov N, Vila M, Trillat A-C, Goodchild R, Larsen KE, et al. Resistance of alpha-synuclein null mice to the Parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A. 2002;99(22):14524–9.
  • Xu J, Kao S-Y, Lee FJS, Song W, Jin L-W, Yankner BA. Dopamine-dependent neurotoxicity of alpha-synuclein: A mechanism for selective neurodegeneration in Parkinson disease. Nat Med. 2002;8(6):600–6.
  • Arawaka S, Machiya Y, Kato T. Heat shock proteins as suppressors of accumulation of toxic prefibrillar intermediates and misfolded proteins in neurodegenerative diseases. Curr Pharm Biotechnol. 2010;11(2):158–66.
  • Moors TE, Hoozemans JJM, Ingrassia A, Beccari T, Parnetti L, Chartier-Harlin M-C. Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol Neurodegener. 2017;12. doi:https://doi.org/10.1186/s13024-017-0154-3.
  • Yoon YM, Lee JH, Yun SP, Han YS, Yun CW, Lee HJ. Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion. Sci Rep. 2016;6(39838). doi:https://doi.org/10.1038/srep39838.
  • Chen Y, Zhihong Wu, Xiang Rong. Chemical chaperones reduce ER stress and adipose tissue inflammation in high. Sci Rep. 2016;6. https://doi.org/https://doi.org/10.1038/srep27486.
  • Doerflinger M, Glab J, Nedeva C, Jose I, Lin A, O’Reilly L. Chemical chaperone TUDCA prevents apoptosis and improves survival during polymicrobial sepsis in mice. Sci Rep. 2016;6. doi:https://doi.org/10.1038/srep34702.
  • Uppala JK, Gani AR, Ramaiah KVA. Chemical chaperone, TUDCA unlike PBA, mitigates protein aggregation efficiently and resists ER and non-ER stress induced HepG2 cell death. Sci Rep. 2017;7. doi:https://doi.org/10.1038/s41598-017-03940-1.
  • van der Harg JM, Nölle A, Zwart R, Boerema AS, van Haastert ES, Strijkstra AM. The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress. Cell Death Dis. 2014;5. doi:https://doi.org/10.1038/cddis.2014.354.
  • Keene CD, Rodrigues CMP, Eich T, Linehan-Stieers C, Abt A, Kren BT, et al. A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington’s disease. Exp Neurol. 2001;171(2):351–60.
  • Keene CD, Rodrigues CMP, Eich T, Chhabra MS, Steer CJ, Low WC. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic model of Huntington’s disease. Proc Natl Acad Sci U S A. 2002;99(16):10671–6.
  • Keene CD, Tkac I, Steer CJ, Gruetter R, Low WC. An. Exp Neurol. 2004;187(1):211
  • Rodrigues CMP, Keene CD, Linehan-Stieers C, Ma X, Low W, Steer CJ. Tauroursodeoxycholic acid prevents apoptosis induced by the neurotoxin 3-nitropropionic acid in rat neuronal cells: evidence for a mitochondrial-dependent pathway that does not involve the permeability transition. J Hepatol. 2000;32:86.
  • Rodrigues CMP, Stieers CL-, Keene CD, Ma X, Kren BT, Low WC, Steer CJ. Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: evidence for a mitochondrial pathway independent of the permeability transition. J Neurochem. 2000;75(6):2368–79.
  • Cerri S, Mus L, Blandini F. Parkinson’s disease in women and Men: what’s the difference? J Parkinsons Dis. 2019;9(3):501–15.
  • Antzoulatos E, Jakowec MW, Petzinger GM, Wood RI. Sex differences in motor behavior in the MPTP mouse model of Parkinson’s disease. Pharmacol Biochem Behav. 2010;95(4):466–72.
  • Burks S, Raymick J, Robinson B, Hanig J, Sarkar S. Neuroprotective effects of acetyl-l-carnitine (ALC) in a chronic MPTP-induced Parkinson’s disease mouse model: Endothelial and microglial effects. Neurosci Lett. 2019;703:86–95.
  • Ferguson SA, Law CD, Sarkar S. Chronic MPTP treatment produces hyperactivity in male mice which is not alleviated by concurrent trehalose treatment. Behav Brain Res. 2015;292:68–78.
  • Sarkar S, Chigurupati S, Raymick J, Mann D, Bowyer JF, Schmitt T, et al. Neuroprotective effect of the chemical chaperone, trehalose in a chronic MPTP-induced Parkinson’s disease mouse model. Neurotoxicology. 2014;44:250–62.
  • Lau YS, Novikova L, Roels C. MPTP treatment in mice does not transmit and cause Parkinsonian neurotoxicity in non-treated cagemates through close contact. Neurosci Res. 2005;52(4):371–8.
  • Barber-Singh J, Boo Seo B, Nakamaru-Ogiso E, Lau Y-S, Matsuno-Yagi A, Yagi T. Neuroprotective effect of long-term NDI1 gene expression in a chronic mouse model of Parkinson disorder. Rejuvenation Res. 2009;12(4):259–67.
  • Stephans SE, Yamamoto BK. Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse. 1994;17(3):203–9.
  • Kelly KA, Miller DB, Bowyer JF, O’Callaghan JP. Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. J Neurochem. 2012;122(5):995–1009.
  • Chigurupati S, Son TG, Hyun D-H, Lathia JD, Mughal MR, Savell J, et al. Lifelong running reduces oxidative stress and degenerative changes in the testes of mice. J Endocrinol. 2008;199(2):333–41.
  • Paxinos G., Franklin K.B.J. The mouse brain in sterotaxic coordinates. Compact second edition. 2nd ed. Elsevier; 2003.
  • Bartels T, Choi JG, Selkoe DJ. Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011;477(7362):107–10.
  • Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepatobiliary disorders’. J Hepatol. 2001;35(1):134–46.
  • Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest. 1998;101(12):2790–9.
  • Ramalho RM, Ribeiro PS, Sola S, Castro RE, Steer CJ, Rodrigues CMP. Inhibition of the E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced apoptosis of PC12 cells. J Neurochem. 2004;90(3):567–75.
  • Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson CJ, Wolf CR, Rodrigues CMP, Gama MJ. Tauroursodeoxycholic acid prevents MPTP-induced dopaminergic cell death in a mouse model of Parkinson’s disease. Mol Neurobiol. 2012;46(2):475–86.
  • Suresh SN, Chavalmane AK, DJ V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/alpha-synuclein toxicity. Autophagy. 2017;13(7):1221–34.
  • Fauvet B, Fares M-B, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA. Characterization of semisynthetic and naturally Nalpha-acetylated alpha-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of alpha-synuclein. J Biol Chem. 2012;287(34):28243–62.
  • McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38(8):1285–91.
  • McGeer PL, McGeer EG. Glial reactions in Parkinson’s disease. Mov Disord. 2008;23(4):474–83.
  • Dong Y, Miao Lei, Hei Long, Lin Leilei, Ding Huiqiang. Neuroprotective effects and impact on caspase-12 expression of tauroursodeoxycholic acid after acute spinal cord injury in rats. Int J Clin Exp Pathol. 2015;8(12):15871–8.
  • Gronbeck KR, Rodrigues CMP, Mahmoudi J, Bershad EM, Ling G, Bachour SP, Divani AA. Application of tauroursodeoxycholic acid for treatment of neurological and non-neurological diseases: Is there a potential for Treating Traumatic brain Injury? Neurocrit Care. 2016;25(1):153–66.
  • Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000;20(2):131–47.
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.
  • Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant. 2007;16(3):285–99.
  • Yamamuro A, Kishino T, Ohshima Y, Yoshioka Y, Kimura T, Kasai A, Maeda S. Proteasome inhibitor induces apoptosis through ROS generation by NOX5. J Pharmacol Sci. 2011;115:239–43.
  • Yanguas-Casás N, Barreda-Manso M, Nieto-Sampedro M, Romero-Ramírez L. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation. J Neuroinflammation. 2014;11:50.
  • Yanguas-Casas N, Barreda-Manso MA, Pérez-Rial S, Nieto-Sampedro M, Romero-Ramírez L. TGFbeta Contributes to the anti-inflammatory effects of tauroursodeoxycholic acid on an animal model of acute neuroinflammation. Mol Neurobiol. 2016. doi:https://doi.org/10.1007/s12035-016-0142-6.
  • Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M, Romero-Ramírez L. TUDCA: an agonist of the bile acid receptor GPBAR1/TGR5 With anti-inflammatory effects in microglial cells. J Cell Physiol. 2017;232(8):2231–45.
  • Lo AC, Callaerts-Vegh Z, Nunes AF, Rodrigues CMP, D’Hooge R. Tauroursodeoxycholic acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in APP/PS1 mice. Neurobiol Dis. 2013;50:21–9.
  • Nunes AF, Amaral JD, Lo AC, Fonseca MB, Viana RJS, Callaerts-Vegh Z, et al. TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-beta deposition in APP/PS1 mice. Mol Neurobiol. 2012;45(3):440–54.
  • Ramalho RM, Viana RJS, Low WC, Steer CJ, Rodrigues CMP. Bile acids and apoptosis modulation: an emerging role in experimental Alzheimer’s disease. Trends Mol Med. 2008;14(2):54–62.
  • Moreira S, Fonseca I, Nunes MJ, Rosa A, Lemos L, Rodrigues E, et al. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson’s disease. Exp Neurol. 2017;295:77–87.
  • Soares R, Ribeiro FF, Xapelli S, Genebra T, Ribeiro MF, Sebastião AM. Tauroursodeoxycholic acid Enhances mitochondrial biogenesis, neural stem cell pool, and early neurogenesis in adult rats. Mol Neurobiol. 2017. doi:https://doi.org/10.1007/s12035-017-0592-5.
  • Upagupta C, Carlisle RE, Dickhout JG. Analysis of the potency of various low molecular weight chemical chaperones to prevent protein aggregation. Biochem Biophys Res Commun. 2017;486:163–70.
  • Gani AR, Uppala JK, Ramaiah KVA. Tauroursodeoxycholic acid prevents stress induced aggregation of proteins in vitro and promotes PERK activation in HepG2 cells. Arch Biochem Biophys. 2015;568:8–15.
  • Wang W, Zhao J, Gui W, Sun D, Dai H, Xiao L, et al. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease. Br J Pharmacol. 2018;175(3):469–84.
  • Ueki A, Otsuka M. Life style risks of Parkinson’s disease: association between decreased water intake and constipation. J Neurol. 2004;251(Suppl 7):vII18–23.
  • Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol. 2019;4(4):623–32.
  • Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. GABA-modulating bacteria of the human gut microbiota. Nature Microbiology. 2019;4(3):396–403.
  • Bambury A, Sandhu K, Cryan JF, Dinan TG. Finding the needle in the haystack: systematic identification of psychobiotics. Br J Pharmacol. 2018;175(24):4430–8.
  • Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.