Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 7
420
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Ageing alters the lipid sensing process in the hypothalamus of Wistar rats. Effect of food restriction

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all

References

  • Magnan C, Levi BE, Luquet S. Brain lipid sensing and the neural control of energy balance. Mol Cell Endo. 2015;418:1–6.
  • Cruciani-Guglielmacci C, Magan C. Brain lipoprotein lipase as a regulator of energy balance. Biochimie. 2017;143:51–55.
  • Hamilton JA, Hillard CJ, Spector AA, Watkins PA. Brain uptake and utilization of fatty acids, lipids and lipoproteins: application to neurological disorders. J Mol Neurosci. 2007;33:2–11.
  • Oomura Y, Nakamura T, Sugimori M, Yamada Y. Effect of free fatty acid on the rat lateral hypothalamic neurons. Physiol Behav. 1975;14:483–86.
  • Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51:271–75.
  • Cruciani-Guglielmacci C, López M, Campana M, Le Stunff H. Brain ceramide metabolism in the control of energy balance. Front Physiol. 2017;8:787.
  • Hamilton JA, Brunaldi KA. Model for fatty acid transport into the brain. J Mol Neurosci. 2007;33:12–17.
  • Mitchel RW, Edmundson CL, Miller DW, Hatch GM. On the mechanism of oleate transport across human brain microvessel endothelial cells. J Neurochem. 2009;110:1049–57.
  • Wolfgang MJ, Cha SH, Millington DS, Cline G, Shulman GI, Suwa A, et al. Brain-specific carnitine palmitoyltransferase-1c: role in CNS fatty acid metabolism, food intake and body weight. J Neurochem. 2008;105:1550–59.
  • Gautron L, Elmquist JK, Williams KW. Neural control of energy balance: translating circuits to therapies. Cell. 2015;161:133–45.
  • López M, Nogueiras R, Tena-Sempere M, Diéguez C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol. 2016;12:421–32.
  • Polo-Hernández E, Tello V, Arroyo AA, Domínguez-Prieto M, de Castro F, Tabernero A, et al. Oleic acid synthesized by stearoyl-CoA desaturase (SCD-1) in the lateral periventricular zone of the developing rat brain mediates neuronal growth, migration and arrangement of prospective synapses. Brain Res. 2014;1570:13–25.
  • Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86:839–48.
  • Abdul-Wahed A, Guilmeau S, Postic C. Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab. 2017;26:334–41.
  • Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA. 2003;100:11285–90.
  • Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423:550–55.
  • Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004;432:1027–32.
  • Waterson MJ, Horvath TL. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 2015;22:962–70.
  • Sheng Z, Santiago AM, Thomas MP, Routh VH. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry. Mol Cell Neuroscience. 2014;62:30–41.
  • Fadel J, Deutch AY. Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111:379–87.
  • Murray S, Tulloch A, Gold MS, Avena NM. Hormonal and neural mechanisms of food reward, eating behaviour and obesity. Nat Rev Endocrinol. 2014;10:540–52.
  • Doan KV, Kinyua AW, Yang DJ, Ko CM, Moh SH, Shong KE, et al. Foxo1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:2733.
  • Silva JP, von Meyenn F, Howell J, Thorens B, Wolfrum C, Stoffel M. Regulation of adaptive behaviour during fasting by hypothalamic Foxa2. Nature. 2009;462:646–50.
  • Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20:10–25.
  • Ma L, Wanga R, Donga W, Zhaoa Z. Caloric restriction can improve learning and memory in C57/BL mice probably via regulation of the AMPK signaling pathway. Exp Gerontology. 2018;102:28–35.
  • Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 2004;18:3004–09.
  • Martínez de Morentin PB, Varela L, Fernø J, Nogueiras R, Diéguez C, López M. Hypothalamic lipotoxicity and the metabolic syndrome. Biochim Biophys Acta. 2010;1801:350–61.
  • Wolfgang MJ, Lane MD. Hypothalamic malonyl-CoA and CPT1c in the treatment of obesity. FEBS J. 2010;278:552–58.
  • Gao S, Kinzig KP, Aja S, Scott KA, Keung W, Kelly S, et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc Natl Acad Sci USA. 2007;104:17358–63.
  • Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science. 2000;288:237923–81.
  • Chakravarthy MV, Zhu Y, López M, Yin L, Wozniak DF, Coleman T, et al. Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. J Clin Invest. 2007;117:2539–52.
  • Vogt MC, Brüning JC. CNS insulin signalling in the control of energy homeostasis and glucose metabolism - from embryo to old age. Trends Endocrinol & Metab. 2013;24:76–84.
  • Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes. 2011;35:1455–65.
  • Fernández-Galaz C, Fernández-Agulló T, Campoy F, Arribas C, Gallardo N, Andrés A, et al. Decreased leptin uptake in hypothalamic nuclei with ageing in Wistar rats. J Endocrinol. 2001;171:23–32.
  • Peralta S, Carrascosa JM, Gallardo N, Ros M, Arribas C. Ageing increases SOCS-3 expression in rat hypothalamus: effects of food restriction. Biochem Biophys Res Comm. 2002;296:425–28.
  • Fernández-Galaz C, Fernández-Agulló T, Pérez C, Peralta S, Arribas C, Andrés A, et al. Long-term food restriction prevents ageing-associated central leptin resistance in Wistar rats. Diabetologia. 2002;45:997–1003.
  • García-San Frutos M, Fernández-Agulló T, De Solís AJ, Andrés A, Arribas C, Carrascosa JM, et al. Impaired central insulin response in aged Wistar rats: role of adiposity. Endocrinology. 2007;148:5238–47.
  • Fernández A, Mazuecos L, Pintado C, Rubio B, López V, de Solís AJ, et al. Effects of moderate chronic food restriction on the development of postprandial dyslipidemia with ageing. Nutrients. 2019;11:1865–88.
  • Glowinski J, Iversen L. Regional studies of catecholamines in the rat brain. 3. Subcellullar distribution of endogenous and exogenous catecholamines in various brain regions. Biochem Pharmacol. 1966;15:977–87.
  • López V, Bonzón-Kulichenko E, Moltó E, Fernández-Agulló T, Arribas C, Andrés A, et al. Food restriction is required to preserve the antisteatotic effects of central leptin in the liver of middle-aged rats. Obesity. 2018;26:877–84.
  • Ruano D, Revilla E, Gavilán MP, Vizuete ML, Pintado C, Vitorica J, et al. Role of p38 and inducible nitric oxide synthase in the in vivo dopaminergic cells degeneration induced by inflammatory processes after lipopolysaccharide injection. Neuroscience. 2006;140:1157–68.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein Measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods. 2001;25:402–08.
  • Nogueiras R, López M, Dieguez C. Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obesity Rev. 2010;11:185–201.
  • Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. Diabetes Metab. 2014;4:29–33.
  • Migrenne S, Cruciani-Guglielmacci C, Kang L, Wang R, Rouch C, Lefevre AL, et al. Fatty acid signaling in the hypothalamus and the neural control of insulin secretion. Diabetes. 2006;55(Suppl 2):S139–44.
  • Bruce KD, Zsombok A, Eckel RH. Lipid Processing in the brain: a key regulator of systemic metabolism. Front Endocrinol. 2017;8:60.
  • Rui L. Brain regulation of energy balance and body weight. Rev Endocr Metab Disord. 2013;14:387–407.
  • Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 2006;9:901–06.
  • Kittappa R, Chang WW, Awatramani RB, McKay RD. The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol. 2007;5:e325.
  • Okamoto K, Kakuma T, Fukuchi S, Masaki T, Sakata T, Yoshimatsu H. Sterol regulatory element binding protein (SREBP)-1 expression in brain is affected by age but not by hormones or metabolic changes. Brain Res. 2006;1081:19–27.
  • Sierra AY, Gratacós E, Carrasco P, Cltet J, Ureña J, Serra D, et al. CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. J Biol Chem. 2008;283:6878–85.
  • Guzmán M, Blázquez C. Ketone bodies synthesis in the brain: possible neuroprotective effects. Prostanglandis Leukot Essent Fatty Acids. 2004;70:287–92.
  • Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2015;1:15–25.
  • Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 2009;119:2577–89.
  • Magnan C, Collins S, Berthault MF, Kassis N, Vincent M, Gilbert M, et al. Lipid infusion lowers sympathetic nervous activity and leads to increased beta-cell responsiveness to glucose. J Clin Invest. 1999;103:413–19.
  • Salamanca A, Bárcena B, Arribas C, Fernández-Agulló T, Martínez C, Carrascosa JM, et al. Aging impairs the hepatic subcellular distribution of ChREBP in response to fasting/feeding in rats: Implications on hepatic steatosis. Exp Gerontology. 2015;69:9–19.
  • Caspi L, Wang PYT, Lam TKT. A balance of lipid-sensing mechanisms in the brain and liver. Cell Metab. 2007;6:99–104.
  • Price NT, van der Leij FR, Jackson VN, Corstorphine CG, Thomson R, Sorensen A, et al. A novel brain-expressed protein related to carnitine palmitoiltransferase. Genomics. 2002;80:433–42.
  • Ramírez S, Martins L, Jacas J, Carrasco P, Pozo M, Clotet J, et al. Hypothalamic ceramide levels regulated by CPT1c mediate the orexigenic effect of ghrelin. Diabetes. 2013;62:2329–37.
  • Gao S, Zhu G, Gao X, Wu D, Carrasco P, Casals N, et al. Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding. Proc Natl Acad Sci USA. 2011;108:9691–96.
  • Carrasco P, Sahún I, McDonald J, Ramírez S, Jacas J, Gratacós E, et al. Ceramide levels regulated by carnitine palmotoyltransferase 1C control dendritic spine maturation and cognition. J Biol Chem. 2012;287:21224–32.
  • Bonzón-Kulichenko E, Schwudke D, Gallardo N, Moltó E, Fernández-Agulló T, Shevchenko A, et al. Central leptin regulates total ceramide content and sterol regulatory element binding protein-1C proteolytic maturation in rat white adipose tissue. Endocrinology. 2009;150:168–78.
  • Campana M, Bellini L, Rouch C, Rachdi L, Coant N, Butin N, et al. Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats. Mol Metab. 2018;8:23–36.
  • Tabernero A, Lavado EM, Granda B, Velasco A, Medina JM. Neuronal differentiation is triggered by oleic acid synthesized and released by astrocytes. J Neurochem. 2001;79:606–16.
  • Velasco A, Tabernero A, Medina JM. Role of oleic acid as a neurotrophic factor is supported in vivo by the expression of GAP-43 subsequent to the activation of SREBP-1 and the up-regulation of stearoyl-CoA desaturase during postnatal development of the brain. Brain Res. 2003;977:103–11.
  • Hannah VC, Ou J, Luong A, Goldstein JL, Brown MS. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem. 2001;276:4365–72.
  • Saito K, Ishikawa M, Murayama M, Urata M, Senoo Y, Toyoshima K, et al. Effects of sex, age, and fasting conditions on plasma lipidomic profiles of fasted Sprague-Dawley rats. Plos One. 2014;9(11):e112266.
  • Bonzon-Kulichenko E, Moltó E, Pintado C, Fernández A, Arribas C, Schwudke D, et al. Changes in visceral adipose tissue plasma membrane lipid composition in old rats are associated with adippocyte hypertrophy with aging. J Gerontol A Biol Sci Med Sci. 2018;73:1139–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.