Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 25, 2022 - Issue 12
311
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The impact of a high-fat diet on physical activity and dopamine neurochemistry in the striatum is sex and strain dependent in C57BL/6J and DBA/2J mice

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.
  • Sanyaolu A, Okorie C, Qi X, Locke J, Rehman S. Childhood and adolescent obesity in the United States: a public health concern. Glob Pediatr Health. 2019;6:2333794X1989130.
  • Leite F, Ribeiro L. Dopaminergic pathways in obesity-associated inflammation. J Neuroimmune Pharmacol [Internet]. 2019 [cited 2020 Feb 14]. Available from: http://link.springer.com/10. 1007/s11481-019-09863-0
  • Gan L, England E, Yang JY, Toulme N, Ambati S, Hartzell DL, et al. A 72-hour high fat diet increases transcript levels of the neuropeptide galanin in the dorsal hippocampus of the rat. BMC Neurosci [Internet]. 2015 [cited 2020 Jan 23];16(1). Available from: http://www.biomedcentral.com/1471-2202/16/51
  • Huang X-F, Yu Y, Zavitsanou K, Han M, Storlien L. Differential expression of dopamine D2 and D4 receptor and tyrosine hydroxylase mRNA in mice prone, or resistant, to chronic high-fat diet-induced obesity. Mol Brain Res. 2005;135(1–2):150–61.
  • Wu C, Garamszegi SP, Xie X, Mash DC. Altered dopamine synaptic markers in postmortem brain of obese subjects. Front Hum Neurosci [Internet]. 2017 [cited 2019 Mar 13];11. Available from: http://journal.frontiersin.org/article/10. 3389/fnhum.2017.00386/full
  • Trogdon JG, Finkelstein EA, Hylands T, Dellea PS, Kamal-Bahl SJ. Indirect costs of obesity: a review of the current literature. Obes Rev. 2008;9(5):489–500.
  • Wang C, Chan JSY, Ren L, Yan JH. Obesity reduces cognitive and motor functions across the lifespan. Neural Plast. 2016;2016:1–13.
  • Forhan M, Gill SV. Obesity, functional mobility and quality of life. Best Pract Res Clin Endocrinol Metab. 2013;27(2):129–37.
  • Trivedi T, Liu J, Probst J, Merchant A, Jones S, Martin A. Obesity and obesity-related behaviors among rural and urban adults in the USA. Rural Remote Health. 2015;15(3267):1–11.
  • Almeida-Suhett CP, Graham A, Chen Y, Deuster P. Behavioral changes in male mice fed a high-fat diet are associated with IL-1β expression in specific brain regions. Physiol Behav. 2017;169:130–40.
  • Krishna S, Lin Z, de La Serre CB, Wagner JJ, Harn DH, Pepples LM, et al. Time-dependent behavioral, neurochemical, and metabolic dysregulation in female C57BL/6 mice caused by chronic high-fat diet intake. Physiol Behav. 2016;157:196–208.
  • Tsai SF, Wu HT, Chen PC, Chen YW, Yu M, Wang TF, et al. High-fat diet suppresses the astrocytic process arborization and downregulates the glial glutamate transporters in the hippocampus of mice. Brain Res. 2018;1700:66–77.
  • Wu H, Liu Q, Kalavagunta PK, Huang Q, Lv W, An X, et al. Normal diet vs high fat diet – a comparative study: behavioral and neuroimmunological changes in adolescent male mice. Metab Brain Dis. 2018;33(1):177–90.
  • Bridgewater LC, Zhang C, Wu Y, Hu W, Zhang Q, Wang J, et al. Gender-based differences in host behavior and gut microbiota composition in response to high fat diet and stress in a mouse model. Scientific Rep [Internet]. 2017 [cited 2019 Feb 4];7(1). Available from: http://www.nature.com/articles/s41598-017-11069-4.
  • Zilkha N, Kuperman Y, Kimchi T. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism. Neuroscience. 2017;345:142–54.
  • Gretebeck KA, Sabatini LM, Black DR, Gretebeck RJ. Physical activity, functional ability, and obesity in older adults: a gender difference. J Gerontol Nurs. 2017;43(09):38–46.
  • Gelineau RR, Arruda NL, Hicks JA, De Pina I M, Hatzidis A, Seggio JA. The behavioral and physiological effects of high-fat diet and alcohol consumption: sex differences in C57BL6/J mice. Brain Behav. 2017;7(6):e00708.
  • Krishna S, Keralapurath MM, Lin Z, Wagner JJ, de La Serre CB, Harn DA, et al. Neurochemical and electrophysiological deficits in the ventral hippocampus and selective behavioral alterations caused by high-fat diet in female C57BL/6 mice. Neuroscience. 2015;297:170–81.
  • Gallo EF. Disentangling the diverse roles of dopamine D2 receptors in striatal function and behavior. Neurochem Int. 2019;125:35–46.
  • Jang Y, Lee MJ, Han J, Kim SJ, Ryu I, Ju X, et al. A high-fat diet induces a loss of midbrain dopaminergic neuronal function that underlies motor abnormalities. Exp Neurobiol. 2017;26(2):104.
  • Rosenfeld CS. Sex-dependent differences in voluntary physical activity: physical activity and Sex differences. J Neurosci Res. 2017;95(1–2):279–90.
  • Mishra A, Singh S, Shukla S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: possible Implication for Parkinson’s disease. J Exp Neurosci. 2018;12:117906951877982.
  • Baik J-H. Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB Rep. 2013;46(11):519–26.
  • Fritz BM, Muñoz B, Yin F, Bauchle C, Atwood BK. A high-fat, high-sugar ‘western’ diet alters dorsal striatal glutamate, opioid, and dopamine transmission in mice. Neuroscience. 2018;372:1–15.
  • Roitman MF. Dopamine operates as a subsecond modulator of food seeking. J Neurosci. 2004;24(6):1265–71.
  • Fordahl SC, Jones SR. High-fat-diet-induced deficits in dopamine terminal function are reversed by restoring insulin signaling. ACS Chem Neurosci. 2017;8(2):290–9.
  • Kroll DS, Feldman DE, Biesecker CL, McPherson KL, Manza P, Joseph PV, et al. Neuroimaging of sex/gender differences in obesity: a review of structure, function, and neurotransmission. Nutrients. 2020 Jun 30;12(7):1942.
  • Lee AK, Mojtahed-Jaberi M, Kyriakou T, Aldecoa-Otolora Astarola E., Arno, M., Marshall, NJ., et. al. Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition. 2010;26(4):411–22.
  • van de Giessen E, Celik F, Schweitzer DH, van den Brink W, Booij J. Dopamine D2/3 receptor availability and amphetamine-induced dopamine release in obesity. J Psychopharmacol. 2014;28(9):866–73.
  • Wang G-J, Volkow ND, Logan J, et al. Brain dopamine and obesity. The Lancet. 2001;357(9253):354–7.
  • Carlin J, Hill-Smith TE, Lucki I, Reyes TM. Reversal of dopamine system dysfunction in response to high-fat diet. Obesity. 2013;21(12):2513–21.
  • Narayanaswami V, Thompson AC, Cassis LA, Bardo MT, Dwoskin LP. Diet-induced obesity: dopamine transporter function, impulsivity and motivation. Int J Obes. 2013;37(8):1095–103.
  • Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes. 2013;37(3):382–9.
  • South T, Huang X-F. High-Fat diet exposure increases dopamine D2 receptor and decreases dopamine transporter receptor binding density in the nucleus accumbens and caudate putamen of mice. Neurochem Res. 2008;33(3):598–605.
  • Karlsson HK, Tuominen L, Tuulari JJ, et al. Obesity is associated with decreased-opioid but unaltered dopamine D2 receptor availability in the brain. J Neurosci. 2015;35(9):3959–65.
  • Fitzgerald E, Murphy S, Martinson HA. Alpha-synuclein pathology and the role of the microbiota in Parkinson’s disease. Front Neurosci. 2019;13:369.
  • Bridi JC, Hirth F. Mechanisms of α-synuclein induced synaptopathy in Parkinson’s disease. Front Neurosci [Internet]. 2018. [cited 2019 Mar 19];12. Available from: http://journal.frontiersin.org/article/10. 3389/fnins.2018.00080/full
  • Han J, Plummer J, Liu L, Byrd A, Aschner M, Erikson KM. The impact of obesity on brain iron levels and α-synuclein expression is regionally dependent. Nutr Neurosci. 2017: 1–9.
  • Ong ZY, Wanasuria AF, Lin MZP, Hiscock J, Muhlhausler BS. Chronic intake of a cafeteria diet and subsequent abstinence. Sex-specific effects on gene expression in the mesolimbic reward system. Appetite. 2013;65:189–99.
  • Mozhui K, Karlsson RM, Kash TL, et al. Strain differences in stress responsivity are associated with divergent amygdala gene expression and glutamate-mediated neuronal excitability. J Neurosci. 2010;30(15):5357–67.
  • Alexander J, Chang GQ, Dourmashkin JT, Leibowitz SF. Distinct phenotypes of obesity-prone AKR/J, DBA2J and C57BL/6J mice compared to control strains. Int J Obes. 2006;30(1):50–9.
  • Montgomery MK, Hallahan NL, Brown SH, et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia. 2013;56(5):1129–39.
  • West DB, Boozer CN, Moody DL, Atkinson RL. Dietary obesity in nine inbred mouse strains. Amer J Physiol. 1992;262(6):R1025–32.
  • Kulesskaya N, Karpova NN, Ma L, Tian L, Voikar V. Mixed housing with DBA/2 mice induces stress in C57BL/6 mice: implications for interventions based on social enrichment. Front Behav Neurosci [Internet]. 2014. [cited 2020 Feb 18];8. Available from: http://journal.frontiersin.org/article/10. 3389/fnbeh.2014.00257/abstract
  • Yin L, Lu L, Prasad K, et al. Genetic-based, differential susceptibility to paraquat neurotoxicity in mice. Neurotoxicol Teratol. 2011;33(3):415–21.
  • Totten MS, Pierce DM, Erikson KM. The influence of sex and strain on trace element dysregulation in the brain due to diet-induced obesity. J Trace Elem Med Biol. 2021;63:126661.
  • Han J, Plummer J, Liu L, Byrd A, Aschner M, Erikson KM. The impact of obesity on brain iron levels and α-synuclein expression is regionally dependent. Nutr Neurosci. 2019;22(5):335–43.
  • Liu L, Byrd A, Plummer J, Erikson KM, Harrison SH, Han J. The effects of dietary Fat and iron interaction on brain regional iron contents and stereotypical behaviors in male C57BL/6J mice. Front Nutr [Internet]. 2016. [cited 2019 Mar 8];3. Available from: http://journal.frontiersin.org/Article/10. 3389/fnut.2016.00020/abstract
  • Barnes CN, Wallace CW, Jacobowitz BS, Fordahl SC. Reduced phasic dopamine release and slowed dopamine uptake occur in the nucleus accumbens after a diet high in saturated but not unsaturated fat. Nutr Neurosci. 2020. doi:10.1080/1028415.2019.1707421.
  • Gellért L, Varga D. Locomotion activity measurement in an open field for mice. Bio-Protocol [Internet]. 2016. [cited 2019 Mar 10];6(13). Available from: https://bio-protocol.org/e1857
  • Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp [Internet]. 2015. [cited 2019 Mar 10];(96). Available from: http://www.jove.com/video/52434/use-open-field-maze-to-measure-locomotor-anxiety-like-behavior
  • Almeida-Suhett CP, Scott JM, Graham A, Chen Y, Deuster PA. Control diet in a high-fat diet study in mice: regular chow and purified low-fat diet have similar effects on phenotypic, metabolic, and behavioral outcomes. Nutr Neurosci. 2019;22(1):19–28.
  • Yorgason JT, España RA, Jones SR. Demon Voltammetry and Analysis software: analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures. J Neurosci Methods. 2011;202(2):158–64.
  • Wu Q, Reith ME, Wightman RM, Kawagoe KT, Garris PA. Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry. J Neurosci Methods. 2001 Dec 15;112(2):119–33.
  • Totten MS, Pierce DM, Erikson KM. Diet-Induced obesity disrupts trace element homeostasis and gene expression in the olfactory bulb. Nutrients. 2020;12(12):3909.
  • Salgado S, Kaplitt MG. The nucleus accumbens: A comprehensive review. Stereotact Funct Neurosurg. 2015;93(2):75–93.
  • Anisman H, Kokkinidis L, Glazier S, Remington G. Differentiation of response biases elicited by scopolamine and d-amphetamine: effects on habituation. Behav Biol. 1976;18(3):401–17.
  • Cabib S, Algeri S, Perego C, Puglisi-Allegra S. Behavioral and biochemical changes monitored in two inbred strains of mice during exploration of an unfamiliar environment. Physiol Behav. 1990;47(4):749–53.
  • Kafkafi N, Lipkind D, Benjamini Y, Mayo CL, Elmer GI, Golani I. SEE locomotor behavior test discriminates C57BL/6J and DBA/2J mouse inbred strains across laboratories and protocol conditions. Behav Neurosci. 2003;117(3):464–77.
  • Koyner J, Demarest K, Jr JM, Cipp L, Hitzemann R. Identification and time dependence of quantitative trait loci for basal locomotor activity in the BXD recombinant inbred series and a B6D2 F2 intercross. Behav Genet. 2000;30:159–70.
  • Logue SF, Owen EH, Rasmussen DL, Wehner JM. Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analyses. Neuroscience. 1997;80(4):1075–86.
  • Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience. 2009;159(4):1193–9.
  • Morris JK, Bomhoff GL, Gorres BK, et al. Insulin resistance impairs nigrostriatal dopamine function. Exp Neurol. 2011;231(1):171–80.
  • Patel JC, Stouffer MA, Mancini M, Nicholson C, Carr KD, Rice ME. Interactions between insulin and diet on striatal dopamine uptake kinetics in rodent brain slices. Eur J Neurosci. 2019;49(6):794–804.
  • Fordahl SC, Locke JL, Jones SR. High fat diet augments amphetamine sensitization in mice: role of feeding pattern, obesity, and dopamine terminal changes. Neuropharmacology. 2016;109:170–82.
  • Dluzen DE, McDermott JL. Neuroprotective role of estrogen upon methamphetamine and related neurotoxins within the nigrostriatal Dopaminergic system. Ann N Y Acad Sci. 2000;914(1):112–26.
  • Thompson TL. Attenuation of dopamine uptake in vivo following priming with estradiol benzoate. Brain Res. 1999;834(1–2):164–7.
  • Ferris MJ, España RA, Locke JL, et al. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc Natl Acad Sci USA. 2014;111(26):E2751–9.
  • Becker JB, Beer ME, Robinson TE. Striatal dopamine release stimulated by amphetamine or potassium: influence of ovarian hormones and the light-dark cycle. Brain Res. 1984;311(1):157–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.