Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 1
1,466
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Chlorogenic acid delays the progression of Parkinson's disease via autophagy induction in Caenorhabditis elegans

, , , , , , , , , , & show all

References

  • Alexander GE. Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci. 2004;6(3):259–80. https://doi.org/10.31887/DCNS.2004.6.3/galexander.
  • Sandor C, Robertson P, Lang C, Heger A, Booth H, Vowles J, et al. Transcriptomic profiling of purified patient-derived dopamine neurons identifies convergent perturbations and therapeutics for Parkinson’s disease. Hum Mol Genet. 2017;26(3):552–66. https://doi.org/10.1093/hmg/ddw412.
  • Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808. https://doi.org/10.1007/pl00007777.
  • Ganguly U, Chakrabarti SS, Kaur U, Mukherjee A, Chakrabarti S. Alpha-synuclein, proteotoxicity and Parkinson's disease: search for neuroprotective therapy. Curr Neuropharmacol. 2018;16(7):1086–97. https://doi.org/10.2174/1570159X15666171129100944.
  • Chung E, Choi Y, Park J, Nah W, Park J, Jung Y, et al. Intracellular delivery of Parkin rescues neurons from accumulation of damaged mitochondria and pathological α-synuclein. Sci Adv. 2020;6(18):eaba1193. https://doi.org/10.1126/sciadv.aba1193.
  • Hernandez-Baltazar D, Zavala-Flores L, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: novel findings in an older model. Neurol (Engl Ed). 2017;32(8):533–9. https://doi.org/10.1016/j.nrl.2015.06.011.
  • Ganguly U, Banerjee A, Chakrabarti SS, Kaur U, Sen O, Cappai R, et al. Interaction of α-synuclein and Parkin in iron toxicity on SH-SY5Y cells: implications in the pathogenesis of Parkinson's disease. Biochem J. 2020;477(6):1109–22. https://doi.org/10.1042/BCJ20190676.
  • Musgrove RE, Helwig M, Bae E-J, Aboutalebi H, Lee S-J, Ulusoy A, Di Monte DA. Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J Clin Invest. 2019;129(9):3738–53. https://doi.org/10.1172/JCI127330.
  • Luk KC. Oxidative stress and α-synuclein conspire in vulnerable neurons to promote Parkinson’s disease progression. J Clin Invest. 2019;129(9):3530–1. https://doi.org/10.1172/JCI130351.
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. https://doi.org/10.1016/j.cell.2007.12.018.
  • Chen Y, Scarcelli V, Legouis R. Approaches for studying autophagy in Caenorhabditis elegans. Cells. 2017;6(3):27. https://doi.org/10.3390/cells6030027.
  • Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell. 2010;141(6):1042–55. https://doi.org/10.1016/j.cell.2010.04.034.
  • Carretero M, Solis GM, Petrascheck M. C. elegans as model for drug discovery. Curr Top Med Chem. 2017;17(18):2067–76. https://doi.org/10.2174/1568026617666170131114401.
  • Corsi AK, Wightman B, Chalfie M. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics. 2015;200(2):387–407. https://doi.org/10.1534/genetics.115.176099.
  • Heitman E, Ingram DK. Cognitive and neuroprotective effects of chlorogenic acid. Nutr Neurosci. 2017;20(1):32–9. https://doi.org/10.1179/1476830514Y.0000000146.
  • Mira A, Yamashita S, Katakura Y, Shimizu K. In vitro neuroprotective activities of compounds from Angelica shikokiana Makino. Molecules. 2015;20(3):4813–32. https://doi.org/10.3390/molecules20034813.
  • Teraoka M, Nakaso K, Kusumoto C, Katano S, Tajima N, Yamashita A, et al. Cytoprotective effect of chlorogenic acid against α-synuclein-related toxicity in catecholaminergic PC12 cells. J Clin Biochem Nutr. 2012;51(2):122–7. https://doi.org/10.3164/jcbn.D-11-00030.
  • Kwon S-H, Ma S-X, Hong S-I, Kim SY, Lee S-Y, Jang C-G. Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells. J Ethnopharmacol. 2014;152(1):173–82. https://doi.org/10.1016/j.jep.2013.12.048.
  • Wu A-G, Pan R, Law BY-K, Qiu W-Q, Wu J-M, He C-L, et al. A mouse model for SARS-CoV-2-induced acute respiratory distress syndrome. Signal Transduct Target Ther. 2021;6(1):1–3. https://doi.org/10.1038/s41392-020-00442-x.
  • Qi B, Kniazeva M, Han M. A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal’s food behavior and growth. Elife. 2017;6:e26243. https://doi.org/10.7554/eLife.26243.
  • Galvagnion C. The role of lipids interacting with α-synuclein in the pathogenesis of Parkinson’s disease. J Parkinsons Dis. 2017;7(3):433–450. https://doi.org/10.3233/JPD-171103.
  • Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease. Dev Dyn. 2010;239(5):1282–95. https://doi.org/10.1002/dvdy.22231.
  • Sawin ER, Ranganathan R, Horvitz HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 2000;26(3):619–31. https://doi.org/10.1016/s0896-6273(00)81199-x.
  • Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, et al. Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. J Neurosci. 2012;32(22):7585–93. https://doi.org/10.1523/JNEUROSCI.5809-11.2012.
  • Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother. 2018;97:67–74. https://doi.org/10.1016/j.biopha.2017.10.064.
  • Houlden H, Singleton AB. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol. 2012;124(3):325–38. https://doi.org/10.1007/s00401-012-1013-5.
  • Ganjam GK, Bolte K, Matschke LA, Neitemeier S, Dolga AM, Höllerhage M, et al. Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell Death Dis. 2019;10(11):1–16. https://doi.org/10.1038/s41419-019-2091-2.
  • Blandini F, Armentero M-T, Martignoni E. The 6-hydroxydopamine model: news from the past. Park Relat Disord. 2008;14:S124–9. https://doi.org/10.1016/j.parkreldis.2008.04.015.
  • Ganapathy K, Datta I, Sowmithra S, Joshi P, Bhonde R. Influence of 6-hydroxydopamine toxicity on α-synuclein phosphorylation, resting vesicle expression, and vesicular dopamine release. J Cell Biochem. 2016;117(12):2719–36. https://doi.org/10.1002/jcb.25570.
  • Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. 2018;28(1):3–13. https://doi.org/10.1111/bpa.12545.
  • Varešlija D, Tipton KF, Davey GP, McDonald AG. 6-Hydroxydopamine: a far from simple neurotoxin. J Neural Transm. 2020;127(2):213–30. https://doi.org/10.1007/s00702-019-02133-6.
  • Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of autophagy in oxidative stress. Int J Mol Sci. 2020;21(9):3289. https://doi.org/10.3390/ijms21093289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.