Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 1
180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Maternal diets affected ceramides and fatty acids in brain regions of neonatal rats with prenatal ethanol exposure

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Sogut I, Uysal O, Oglakci A, Yucel F, Kartkaya K, Kanbak G. Prenatal alcohol-induced neuroapoptosis in rat brain cerebral cortex: protective effect of folic acid and betaine. Childs Nerv Syst. 2017;33(3):407–17.
  • Dikranian K, Qin YQ, Labruyere J, Nemmers B, Olney JW. Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Dev Brain Res. 2005;155(1):1–13.
  • Popova S, Lange S, Probst C, Gmel G, Rehm J. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(3):e290–9.
  • Lange S, Probst C, Gmel G, Rhem J, Burd L, Popova S. Global prevalence of fetal alcohol spectrum disorder among children and youth. JAMA Pediatr. 2017;171(10):948–56.
  • Health Canada [Internet]. Fetal alcohol spectrum disorder. 2017 [cited 2021 Oct 10]. Available from: https://www.canada.ca/en/health-canada/services/healthy-living/your-health/diseases/fetal-alcohol-spectrum-disorder.html.
  • Saito M, Saito M, Cooper TB, Vadasz C. Ethanol-induced changes in the content of triglycerides, ceramides, and glucosylceramides in cultured neurons. Alcohol Clin Exp Res. 2005;29(8):1374–83.
  • Pascual M, Valles SL, Renau-Piqueras J, Guerri C. Ceramide pathways modulate ethanol-induced cell death in astrocytes. J Neurochem. 2003;87(6):1535–45.
  • Saito M, Chakraborty G, Hedge M, Ohsie J, Paik SM, Vadasz C, et al. Involvement of ceramide in ethanol-induced apoptotic neurodegeneration in the neonatal mouse brain. J Neurochem. 2010;115(1):168–77.
  • Wang G, Bieberich E. Prenatal alcohol exposure triggers ceramide-induced apoptosis in neural crest-derived tissues concurrent with defective cranial development. Cell Death Dis. 2010;1(5):e46.
  • Wang L, Wu L, Wang X, Deng J, Ma Z, Fan W, et al. Prenatal alcohol exposure inducing the apoptosis of mossy cells in hippocampus of SMS2-/- mice. Environ Toxicol Pharmacol. 2015;40(3):975–82.
  • Mencarelli C, Martinez-Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci. 2013;70(2):181–203.
  • Pettus BJ, Chalfant CE, Hannun YA. Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta. 2002;1585(2-3):114–25.
  • Sandhoff R. Very long chain sphingolipids: tissue expression, function and synthesis. FEBES Lett. 2010;584(9):1907–13.
  • Car H, Zendzian-Piotrowska M, Prokopiuk S, Fiedorowicz A, Sadowska A, Kurek K, et al. Ceramide profiles in the brain of rats with diabetes induced by streptozotocin. FEBS J. 2012;279(11):1943–52.
  • Filippov V, Song MA, Zhang K, Vinters HV, Tung S, Kirsch WM, et al. Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases. J Alzheimers Dis. 2012;29(3):537–47.
  • Willaime S, Vanhoutte P, Caboche J, Lemaigre-Dubreuil Y, Mariani J, Brugg B. Ceramide-induced apoptotsis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur J Neurosci. 2001;13(11):2037–46.
  • Czubowicz K, Strosznajder R. Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine 1-phosphate. Mol Neurobiol. 2014;50(1):26–37.
  • Woodcock J. Sphingosine and ceramide signalling in apoptosis. IUBMB Life. 2006;58(8):462–6.
  • Guerri C. Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res. 1998;22(2):304–12.
  • Mira RG, Lira M, Tapia-Rojas C, Rebolledo DL, Quintanilla RA, Cerpa W. Effect of alcohol on hippocampal-dependent plasticity and behavior: role of glutamatergic synaptic transmission. Front Behav Neurosci. 2019;13:288.
  • Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol Res. 1999;40(3):211–25.
  • Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, et al. Docosahexanmoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPAR(-mediated mechanisms in Alzheimer’s disease models. PLoS One. 2011;6(1):e15816.
  • Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr. 1992;120(4 Pt 2):S129–38.
  • Mulder KA, King DJ, Innis SM. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. PLoS One. 2014;9(1):e83764.
  • Kuratko CN, Barrett EC, Nelson EB, Salem N Jr. The relationship of docosahexaenoic acid (DHA) with learning and behavior in healthy children: a review. Nutrients. 2013;5(7):2777–810.
  • Wen Z, Kin HY. Alternations in hippocampal phospholipid profile by prenatal exposure to ethanol. J Neurochem. 2004;89(6):1368–77.
  • Burdge GC, Postle AD. Effect of maternal ethanol consumption during pregnancy on the phospholipid molecular species composition of fetal guinea-pig brain, liver and plasma. Biochim Biophys Acta. 1995;1256(3):346–52.
  • Innis SM. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008;1237:35–43.
  • Denkins YM, Woods J, Whitty JE, Hannigan JH, Martier SS, Sokol RJ, et al. Effects of gestational alcohol exposure on the fatty acid consumption of umbilical cord serum in humans. Am J Clin Nutr. 2000;71(1 Suppl):300S–6S.
  • Wang Y, Feltham BA, Eskin MNA, Suh M. Differential effects of maternal diets on birth outcomes and metabolic parameters in rats after ethanol consumption during pregnancy. Br J Nutr. 2021;126(8):1130–9.
  • Cano MJ, Ayala A, Murillo ML, Carreras O. Protective effect of folic acid against oxidative stress produced in 21-day postpartum rats by maternal-ethanol chronic consumption during pregnancy and lactation period. Free Radic Res. 2001;34(1):1–8.
  • Wentzel P, Rydberg U, Eriksson UJ. Antioxidant treatment diminishes ethanol-induced congenital malformations in the rat. Alcohol Clin Exp Res. 2006;30(10):1752–60.
  • Lanza IR, Blachnio-Zabielska A, Johnson ML, Schimke JM, Jakaitis DR, Lebrasseur NK, et al. Influence of fish oil on skeletal muscle mitochondrial energentics and lipid metabolites during high-fat diet. Am J Physiol Endocrinol Metab. 2013;304(12):E1391–403.
  • Kasbi-Chadli F, Ferchaud-Roucher V, Krempf M, Ouguerram K. Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet. Eur J Nutr. 2016;55(2):589–99.
  • Taltavull N, Ras R, Marine S, Romeu M, Giralt M, Mendez L, et al. Protective effects of fish oil on pre-diabetes: a lipidomic analysis of liver ceramides in rats. Food Funct. 2016;7(9):3981–8.
  • Walchuk C, Wang Y, Suh M. The impact of EPA and DHA on ceramide lipotoxicity in the metabolic syndrome. Br J Nutr. 2021;125(8):863–75.
  • Jin J, Lu Z, Li Y, Cowart LA, Lopes-Virella MF, Huang Y. Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis. PLoS One. 2018;13(2):e0193343.
  • Pinel A, Rigaudiere JP, Laillet B, Pouyet C, Malpuech-Brugere C, Prip-Buus C, et al. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861(1):12–20.
  • Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3(1):79–83.
  • Canadian Council on Animal Care. Guide to the care and use of experimental animals. Vol 1. 1993 [cited May 2020]. Available from: https://www.ccac.ca/Documents/Standards/Guidelines/Experimental_Animals_Vol1.pdf.
  • Denomme J, Stark KD, Holub BJ. Dietary quantitated dietary (n-3) fatty acid intakes of pregnant Canadian women lower than current dietary recommendation. J Nutr. 2005;135(2):206–11.
  • Marquardt K, Brigman JL. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: insights from rodent models. Alcohol. 2016;51:1–15.
  • Ngai YF, Sulistyoningurm DC, O’Neill R, Innis SM, Weinberg J, Devlin AM. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R613–22.
  • Kang JX, Wang J. A simplified method for analysis of polyunsaturated fatty acids. BMC Biochem. 2005;6:5.
  • Feltham BA, Louis XL, Kapourchali FR, Eskin MNA, Suh M. DHA supplementation during prenatal ethanol exposure alters the expression of fetal rat liver genes involved in oxidative stress regulation. Appl Physiol Nutr Metab. 2019;44(7):744–50.
  • Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.
  • Makdessi SA, Sweidan H, Schmid E, Weimar U, Gulbins E, Lang F. Quantitative determination of ceramide molecular species in dendritic cells. Cell Physiol Biochem. 2016;39(4):1608–17.
  • Jansen GR, Zanetti MW, Hutchison CF. Studies on lipogenesis in vivo: fatty acid and cholesterol synthesis in hyperglycaemic-obese mice. Biochem J. 1967;102(3):870–7.
  • Burdge GC, Wright SM, Warner JO, Postle AD. Fetal brain and liver phospholipid fatty acid composition in a guinea pig model of fetal alcohol syndrome: effect of maternal supplementation with tuna oil. J Nutr Biochem. 1997;8:438–44.
  • Narce M, Poisson JP, Bellenger J, Bellenger S. Effect of ethanol on polyunsaturated fatty acid biosynthesis in hepatocytes from spontaneously hypertensive rats. Alcohol Clin Exp Res. 2001;25(8):1231–7.
  • Bayer SA, Altman J, Russo RJ, Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 1993;14(1):83–144.
  • Chen VS, Morrison JP, Southwell MF, Foley JF, Bolon B, Elmore SA. Histology atlas of the developing prenatal and postnatal mouse central nervous system, with emphasis on prenatal days E7.5 to E18.5. Toxicol Pathol. 2017;45(6):705–44.
  • Chavko M, Nemoto EM, Melick JA. Regional lipid composition in the rat brain. Mol Chem Neuropathol. 1993;18(1-2):123–31.
  • Sun GY, Horrocks LA. The fatty acid and aldehyde composition of the major phospholipids of mouse brain. Lipids. 1968;3(1):79–83.
  • Dasgupta S, Adams JA, Hogan EL. Maternal alcohol consumption increases sphingosine levels in the brains of progeny mice. Neurochem Res. 2007;32(12):2217–24.
  • Patten AR, Fontaine CJ, Christie BR. A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors. Front Pediatr. 2014;2(93):1–19.
  • Grosch S, Schiffman S, Geisslinger G. Chain length-specific properties of ceramides. Prog Lipid Res. 2012;51(1):50–62.
  • Blachnio-Zabielska AU, Chacinska M, Vendelbo MH, Zabielski P. The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance. Cell Physiol Biochem. 2016;40(5):1207–20.
  • Chocian G, Chabowski A, Zendzian-Piotrowska M, Harasim E, Lukaszuk B, Gorski J. High fat diet induces ceramide and sphingomyelin formation in rat’s liver nuclei. Mol Cell Biochem. 2010;340(1-2):125–31.
  • Mathews AT, Famodu OA, Olfert MD, Murray PJ, Cuff CF, Downes MT, et al. Efficacy of nutritional interventions to lower circulating ceramides in young adults: FRUVEDomic pilot study. Physiol Rep. 2017;5(13):E13329.
  • Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99–104.
  • White LD, Barone S Jr. Qualitative and quantitative estimates of apoptosis from birth to senescence in the rat brain. Cell Death Differ. 2001;8(4):345–56.
  • Sullivan EL, Nousen EK, Chamlou KA, Grove KL. The impact of maternal high-fat diet consumption on neural development and behavior of offspring. Int J Obes Suppl. 2012;2(Suppl 2):S7–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.