Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 1
388
Views
1
CrossRef citations to date
0
Altmetric
Review

Nutrigenomics in Parkinson’s disease: diversity of modulatory actions of polyphenols on epigenetic effects induced by toxins

, , , &

References

  • Rondón-Villarreal P, López WOC. Identification of potential natural neuroprotective molecules for Parkinson’s disease by using chemoinformatics and molecular docking. J Mol Graph Model. 2020;97:1–810.1016/j.jmgm.2020.107547.
  • Kidd PM. Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern Med Rev. 2000;5:502–29.
  • Shastry BS. Parkinson disease: etiology, pathogenesis and future of gene therapy. Neurosci Res. 2001;41:5–12. doi:10.1016/S0168-0102(01)00254-1.
  • Goldman SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol. 2014;54:141–64. doi:10.1146/annurev-pharmtox-011613-135937.
  • Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 2009;30:475–83. doi:10.1016/j.tips.2009.06.005.
  • Gezer AO, Kochmanski J, VanOeveren SE, Cole-Strauss A, Kemp CJ, Patterson JR, et al. Developmental exposure to the organochlorine pesticide dieldrin causes male-specific exacerbation of α-synuclein-preformed fibril-induced toxicity and motor deficits. Neurobiol Dis [Internet]. Elsevier Inc. 2020;141:104947. doi:10.1016/j.nbd.2020.104947.
  • Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases-A mechanistic approach. Toxicol Lett [Internet]. Elsevier Ireland Ltd. 2014;230:85–103. doi:10.1016/j.toxlet.2014.01.039.
  • Ferrante M, Conti GO. Environment and neurodegenerative diseases: an update on miRNA role. MicroRNA. 2017 Dec 6;6(3):157–165. doi:10.2174/2211536606666170811151503.
  • Aloizou AM, Siokas V, Sapouni EM, Sita N, Liampas I, Brotis AG, et al. Parkinson’s disease and pesticides: Are microRNAs the missing link? Sci Total Environ [Internet]. Elsevier B.V. 2020;744:140591. doi:10.1016/j.scitotenv.2020.140591.
  • Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA - J Am Med Assoc. 2020;323:548–60. doi:10.1001/jama.2019.22360.
  • Hornedo-Ortega R, Cerezo AB, de Pablos RM, Krisa S, Richard T, García-Parrilla MC, Troncoso AM. Phenolic compounds characteristic of the Mediterranean diet in mitigating microglia-mediated neuroinflammation. Front Cell Neurosci. 2018;12:1–20; 373. doi:10.3389/fncel.2018.00373. PMID: 30405355.
  • Singh A, Tripathi P, Yadawa AK, Singh S. Promising polyphenols in Parkinson’s disease therapeutics. Neurochem Res [Internet]. Springer US. 2020;45:1731–45. doi:10.1007/s11064-020-03058-3.
  • Kempuraj D, Thangavel R, Kempuraj DD, Ahmed ME, Selvakumar GP, Raikwar SP, et al. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. BioFactors. 2020: 1–8. doi:10.1002/biof.1687.
  • Kempuraj D, Thangavel R, Kempuraj DD, Ahmed ME, Selvakumar GP, Raikwar SP, Zaheer SA, Iyer SS, Govindarajan R, Chandrasekaran PN, Zaheer A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors. 2021 Mar;47(2):190–197. doi:10.1002/biof.1687. Epub 2020 Oct 24.
  • Ryu YK, Park HY, Go J, Kim YH, Hwang JH, Choi DH, et al. Effects of histone acetyltransferase inhibitors on l-DOPA-induced dyskinesia in a murine model of Parkinson’s disease. J Neural Transm [Internet]. Springer Vienna. 2018;125:1319–31. doi:10.1007/s00702-018-1902-4.
  • Velagapudi R, Ajileye OO, Okorji U, Jain P, Aderogba MA, Olajide OA. Agathisflavone isolated from Anacardium occidentale suppresses SIRT1-mediated neuroinflammation in BV2 microglia and neurotoxicity in APPSwe-transfected SH-SY5Y cells. Phyther Res. 2018;32:1957–66. doi:10.1002/ptr.6122.
  • Kujawska M, Jodynis-Liebert J. Polyphenols in Parkinson’s disease: A systematic review of in vivo studies. Nutrients. 2018;10:1–34. doi:10.3390/nu10050642.
  • Rathore AS, Birla H, Sen SS, Zahra W, Dilnashin H, Singh R, et al. Epigenetic modulation in Parkinson’s disease and potential treatment therapies. Neurochem Res. 2021;46:1618–26. doi:10.1007/s11064-021-03334-w.
  • Payami H, Larsen K, Bernard S, Nutt J. Increased risk of Parkinson’s disease in parents and siblings of patients. Ann Neurol. 1994;36:659–61. doi:10.1002/ana.410360417.
  • Guedes L C, Mestre T, Outeiro TF, Ferreira JJ. Are genetic and idiopathic forms of Parkinson’s disease the same disease? J Neurochem. 2020;152:515–22. doi:10.1111/jnc.14902.
  • Domingo A, Klein C. Genetics of Parkinson disease [Internet]. 1st ed. Handbook of Clinical Neurology. Elsevier B.V.; 2018. doi:10.1016/B978-0-444-63233-3.00014-2.
  • Kay DM, Factor SA, Samii A, Higgins DS, Griffith A, Roberts JW, et al. Genetic association between α-synuclein and idiopathic Parkinson’s disease. Am J Med Genet Part B Neuropsychiatr Genet. 2008;147:1222–30. doi:10.1002/ajmg.b.30758.
  • Bai X, Jin J, Li S, Wang H, Xie A. CUB and sushi Multiple domains (CSMD1) gene polymorphisms and susceptibilities to idiopathic Parkinson’s disease in northern Chinese Han population: a case-control study. Parkinsons Dis. 2021;2021:1–10. doi:10.1155/2021/6661162.
  • Del Rey NLG, Quiroga-Varela A, Garbayo E, Carballo-Carbajal I, Fernández-Santiago R, Monje MHG, et al. Advances in Parkinson’s disease: 200 years later. Front Neuroanat. 2018;12:1–14. doi:10.3389/fnana.2018.00113.
  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science (80-). 1997;276(5321):2045–7. doi:10.1126/science.276.5321.2045.
  • Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7. doi:10.1016/j.neuron.2004.11.005.
  • Di Fonzo A, Rohé CF, Ferreira J, Chien HF, Vacca L, Stocchi F, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet. 2005;365(9457):412–5. doi:10.1016/S0140-6736(05)17829-5.
  • Cabezudo D, Baekelandt V, Lobbestael E. Multiple-hit hypothesis in Parkinson’s disease: LRRK2 and inflammation. Front Neurosci. 2020;14:1–8. doi:10.3389/fnins.2020.00376.
  • Thaler A, Gurevich T, Bar Shira A, Gana Weisz M, Ash E, Shiner T, Orr-Urtreger A, et al. A “dose” effect of mutations in the GBA gene on Parkinson’s disease phenotype. Park Relat Disord [Internet]. Elsevier Ltd. 2017;36:47–51. doi:10.1016/j.parkreldis.2016.12.014.
  • Balestrino R, Schapira AHV. Glucocerebrosidase and Parkinson disease: molecular, clinical, and therapeutic implications. Neuroscientist. 2018;24:540–59. doi:10.1177/1073858417748875.
  • Elbaz A, Ross OA, Ioannidis JPA, Soto-Ortolaza AI, Moisan F, Aasly J, et al. Independent and joint effects of the MAPT and SNCA genes in Parkinson disease. Ann Neurol. 2011;69:778–92. doi:10.1002/ana.22321.
  • Samaranch L, Lorenzo-Betancor O, Arbelo JM, Ferrer I, Lorenzo E, Irigoyen J, et al. PINK1-linked parkinsonism is associated with Lewy body pathology. Brain. 2010;133:1128–42. doi:10.1093/brain/awq051.
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. [Internet]. Nature Publishing Group. 2010;28:1057–68. doi:10.1038/nbt.1685.
  • Lovrečić L, Maver A, Zadel M, Peterlin B. The role of epigenetics in neurodegenerative diseases. In: Kishore U, editor. Neurodegenerative disease. Intechopen.com, 2013; Chapter 14; p. 1–23. https://doi.org/10.5772/54744.
  • Lin Q, Ding H, Zheng Z, Gu Z, Ma J, Chen L, et al. Promoter methylation analysis of seven clock genes in Parkinson’s disease. Neurosci Lett [Internet]. Elsevier Ireland Ltd. 2012;507:147–50. doi:10.1016/j.neulet.2011.12.007.
  • Ghosh P, Saadat A. Neurodegeneration and epigenetics: a review. Neurologia (Engl Ed). 2021 Mar 9;S0213-4853(21)00034:1–7. doi:10.1016/j.nrl.2021.01.016.
  • Labbé C, Lorenzo-betancor O, Ross OA. Epigenetic regulation in Parkinson's disease. Acta Neuropathol. 2016;132:515–530. doi:10.1007/s00401-016-1590-9.
  • Pavlou MAS, Pinho R, Paiva I, Outeiro TF. The yin and yang of α-synuclein-associated epigenetics in Parkinson’s disease. Brain. 2017;140:878–86. doi:10.1093/brain/aww227.
  • Jowaed A, Schmitt I, Kaut O, Wüllner U. Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci. 2010;30:6355–9. doi:10.1523/JNEUROSCI.6119-09.2010.
  • Pihlstrøm L, Berge V, Rengmark A, Toft M. Parkinson’s disease correlates with promoter methylation in the α-synuclein gene. Mov Disord. 2015;30:577–80. doi:10.1002/mds.26073.
  • Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, et al. α-synuclein sequesters Dnmt1 from the nucleus: A novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem. 2011;286:9031–7. doi:10.1074/jbc.C110.212589.
  • Coupland KG, Mellick GD, Silburn PA, Mather K, Armstrong NJ, Sachdev PS, et al. DNA methylation of the MAPT gene in Parkinson’s disease cohorts and modulation by vitamin E in vitro. Mov Disord. 2014;29:1606–14. doi:10.1002/mds.25784.
  • Su X, Chu Y, Kordower JH, Li B, Cao H, Huang L, et al. PGC-1α promoter methylation in Parkinson’s disease. PLoS One. 2015;10:1–24. doi:10.1371/journal.pone.0134087.
  • Kaut O, Schmitt I, Wüllner U. Genome-scale methylation analysis of Parkinson’s disease patients’ brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics. 2012;13:87–91. doi:10.1007/s10048-011-0308-3.
  • Masliah E, Dumaop W, Galasko D, Desplats P. Distinctive patterns of DNA methylation associated with Parkinson disease: Identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics. 2013;8:1030–8. doi:10.4161/epi.25865.
  • Park G, Tan J, Garcia G, Kang Y, Salvesen G, Zhang Z. Regulation of histone acetylation by autophagy in Parkinson disease. J Biol Chem. 2016;291:3531–40. doi:10.1074/jbc.M115.675488.
  • Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach S, Di Monte DA, et al. Nuclear localization of α-synuclein and its interaction with histones. Biochemistry. 2003;42(28):8465–71. doi:10.1021/bi0341152.
  • Mizuta I, Takafuji K, Ando Y, Satake W, Kanagawa M, Kobayashi K, et al. YY1 binds to α-synuclein 3′-flanking region SNP and stimulates antisense noncoding RNA expression. J Hum Genet. 2013;58:711–9. doi:10.1038/jhg.2013.90.
  • Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP+-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci. 2014;8:1–14. doi:10.3389/fncel.2014.00182.
  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. A microRNA feedback circuit in midbrain dopamine neurons. Science (80-). 2007;317(5842):1220–4. doi:10.1126/science.1140481.
  • Kanagaraj N, Beiping H, Dheen ST, Tay SSW. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson’s disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience [Internet]. IBRO. 2014;272:167–79. doi:10.1016/j.neuroscience.2014.04.039.
  • Tolosa E, Botta-Orfila T, Morató X, Calatayud C, Ferrer-Lorente R, Martí MJ, Fernández M, Gaig C, Raya Á, Consiglio A, Ezquerra M, Fernández-Santiago R. MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol Aging. 2018 Sep;69:283–291. doi:10.1016/j.neurobiolaging.2018.05.032.
  • Ghanbari M, Darweesh SKL, de Looper HWJ, van Luijn MM, Hofman A, Ikram MA, et al. Genetic variants in MicroRNAs and their binding sites are associated with the risk of Parkinson disease. Hum Mutat. 2016;37:292–300. doi:10.1002/humu.22943.
  • Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA. MicroRNAs and target genes as biomarkers for the diagnosis of early onset of Parkinson disease. Front Mol Neurosci. 2017;10:1–20, 352. doi:10.3389/fnmol.2017.00352. PMID: 29163029;
  • Sánchez-Serrano SL, Cruz SL, Lamas M. Repeated toluene exposure modifies the acetylation pattern of histones H3 and H4 in the rat brain. Neurosci Lett. 2011 Feb 11;489(3):142–7. doi:10.1016/j.neulet.2010.12.004.
  • Tarale P, Chakrabarti T, Sivanesan S, Naoghare P, Bafana A, Krishnamurthi K. Potential role of epigenetic mechanism in manganese induced neurotoxicity. BioMed Res Int. 2016;2016:2548792. doi:10.1155/2016/2548792.
  • Collotta M, Bertazzi PA, Bollati V. Epigenetics and pesticides. Toxicology [Internet]. Elsevier Ireland Ltd. 2013;307:35–41. doi:10.1016/j.tox.2013.01.017.
  • Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology. 2011;32:586–95. doi:10.1016/j.neuro.2011.05.018.
  • Langston JW. The MPTP story. J Parkinsons Dis. 2017;7:S11–S19. doi:10.3233/JPD-179006.
  • Nicholas AP, Lubin FD, Hallett PJ, Vattem P, Ravenscroft P, Bezard E, et al. Striatal histone modifications in models of levodopa-induced dyskinesia. J Neurochem. 2008;106:486–94. doi:10.1111/j.1471-4159.2008.05417.x.
  • Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology [Internet]. Elsevier B.V. 2015;46:101–16. doi:10.1016/j.neuro.2014.12.002.
  • Horst CH, Schlemmer F, de Aguiar Montenegro N, Domingues ACM, Ferreira GG, da Silva Ribeiro CY, et al. Signature of aberrantly expressed microRNAs in the striatum of rotenone-induced parkinsonian rats. Neurochem Res [Internet]. Springer US. 2018;43:2132–40. doi:10.1007/s11064-018-2638-0.
  • Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG. Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol. 2010;77:621–32. doi:10.1124/mol.109.062174.https://doi.org/10.1124/mol.109.062174.
  • Kochmanski J, VanOeveren SE, Patterson JR, Bernstein AI. Developmental Dieldrin exposure alters DNA methylation at genes related to dopaminergic neuron development and Parkinson's disease in mouse midbrain. Toxicol Sci. 2019 Jun 1;169(2):593–607. doi:10.1093/toxsci/kfz069.
  • Mursaleen LR, Stamford JA. Drugs of abuse and Parkinson’s disease. Prog Neuro-Psychopharmacology Biol Psychiatry [Internet]. Elsevier Inc. 2016;64:209–17. doi:10.1016/j.pnpbp.2015.03.013.
  • Jiang W, Li J, Zhang Z, Wang H, Wang Z. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine. Eur J Pharmacol. 2014;745:243–8. doi:10.1016/j.ejphar.2014.10.043.
  • Omonijo O, Wongprayoon P, Ladenheim B, McCoy MT, Govitrapong P, Jayanthi S, et al. Differential effects of binge methamphetamine injections on the mRNA expression of histone deacetylases (HDACs) in the rat striatum. Neurotoxicology [Internet]. Elsevier B.V. 2014;45:178–84. doi:10.1016/j.neuro.2014.10.008.
  • Sales NMR, Pelegrini PB, Goersch MC. Nutrigenomics: definitions and advances of this new science. J Nutr Metab. 2014;2014:1–6. Article ID 202759. doi:10.1155/2014/202759.
  • Vuolo MM, Lima VS, Maróstica Junior MR. Phenolic compounds: structure, classification, and antioxidant power [Internet]. In: Bioactive compounds, Chapter 2. Elsevier Inc.; 2019. p. 33–50. doi:10.1016/B978-0-12-814774-0.00002-5.
  • Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A. Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol Reports [Internet]. Springer International Publishing. 2020;72:769–82. doi:10.1007/s43440-020-00112-3.
  • Hassan FU, Rehman MSU, Khan MS, Ali MA, Javed A, Nawaz A, et al. Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front Genet. 2019;10(JUN):1–16. doi:10.3389/fgene.2019.00514.
  • Wang Z, Yang C, Liu J, Tong BCK, Zhu Z, Malampati S, et al. A curcumin derivative activates TFEB and protects against parkinsonian neurotoxicity in vitro. Int J Mol Sci. 2020;21:1–14. 1515. doi:10.3390/ijms21041515.
  • Singh PK, Kotia V, Ghosh D, Mohite GM, Kumar A, Maji SK. Curcumin modulates α-synuclein aggregation and toxicity. ACS Chem Neurosci. 2013;4:393–407. doi:10.1021/cn3001203.
  • Tabatabaei Mirakabad FS, Khoramgah MS, Tahmasebinia F, Darabi S, Abdi S, Abbaszadeh HA, et al. The effect of low-level laser therapy and curcumin on the expression of LC3, ATG10 and BAX/BCl2 ratio in PC12 cells induced by 6-hydroxide dopamine. J Lasers Med Sci [Internet]. 2020;11:299–304. doi:10.34172/jlms.2020.50.
  • Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr. 2011;6:93–108. doi:10.1007/s12263-011-0222-1.
  • Teijido O, Cacabelos R. Pharmacoepigenomic interventions as novel potential treatments for Alzheimer’s and Parkinson’s diseases. Int J Mol Sci. 2018;19:1–36. doi:10.3390/ijms19103199.
  • Arora I, Sharma M, Sun LY, Tollefsbol TO. The epigenetic link between polyphenols, aging and age-related diseases. Genes (Basel). 2020;11:1–21. doi:10.3390/genes11091094.
  • Chiu S, Terpstra KJ, Bureau Y, Hou J, Raheb H, Cernvosky Z, et al. Liposomal-formulated curcumin [LipocurcTM] targeting HDAC (histone deacetylase) prevents apoptosis and improves motor deficits in Park 7 (DJ-1)-knockout rat model of Parkinson’s disease: implications for epigenetics-based nanotechnology-driven drug platfor. J Complement Integr Med. 2013;10:75–88. doi:10.1515/jcim-2013-0020.
  • Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, et al. The therapeutic potential of Apigenin. Int J Mol Sci. 2019;20:1–26. doi:10.3390/ijms20061305.
  • Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr. 2017;8:423–35.
  • Siddique YH, Naz F, Jyoti S, Afzal M. Protective effect of apigenin in transgenic Drosophila melanogaster model of Parkinson’s disease. Pharmacologyonline. 2011;3:790–5. doi:10.4081/ams.2012.e3.
  • Anusha C, Sumathi T, Joseph LD. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact [Internet]. Elsevier Ireland Ltd. 2017;269:67–79. doi:10.1016/j.cbi.2017.03.016.
  • Chen L, Xie W, Xie W, Zhuang W, Jiang C, Liu N. Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats. Arch Gerontol Geriatr [Internet]. Elsevier Ireland Ltd. 2017;73:29–36. doi:10.1016/j.archger.2017.07.004.
  • Li X, Sun S, Tong E. Experimental study on the protective effect of Puerarin to Parkinson disease. J Huazhong Univ Sci Technol – Med Sci. 2003;23:148–50. doi:10.1007/bf02859940.
  • Zhu G, Wang X, Wu S, Li X, Li Q. Neuroprotective effects of Puerarin on 1-methyl- Parkinson ‘ s disease model in mice. Phyther Res. 2014;186(28):179–86. doi:10.1002/ptr.4975.
  • Li X, Zhang J, Zhang X, Dong M. Puerarin suppresses MPP+/MPTP-induced oxidative stress through an Nrf2-dependent mechanism. Food Chem Toxicol [Internet]. Elsevier Ltd. 2020;144:111644. doi:10.1016/j.fct.2020.111644.
  • Xiong N, Li N, Martin E, Yu J, Li J, Liu J, et al. hVMAT2: a target of individualized medication for Parkinson’s disease. Neurotherapeutics. 2016;13:623–34.
  • Xiong S, Liu W, Li D, Chen X, Liu F, Yuan D, et al. Oral delivery of puerarin nanocrystals to improve brain accumulation and anti-parkinsonian efficacy. Mol Pharm. American Chemical Society. 2019;16:1444–55. doi:10.1007/s13311-016-0435-5.
  • dos Santos Souza C, Grangeiro MS, Lima Pereira EP, dos Santos CC, da Silva AB, Sampaio GP, et al. Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicology [Internet]. Elsevier B.V. 2018;65:85–97. doi:10.1016/j.neuro.2018.02.001.
  • Santos CC, Muñoz P, Almeida ÁMAN, de Lima David JP, David JM, Lima Costa S, et al. The flavonoid Agathisflavone from Poincianella pyramidalis prevents aminochrome neurotoxicity. Neurotox Res. 2020;38:579–84. doi:10.1007/s12640-020-00237-6.
  • Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011 Apr;11(4):298–344. doi:10.2174/138955711795305335.
  • Dauncey MJ. Nutrition, the brain and cognitive decline: insights from epigenetics. Eur J Clin Nutr. Nature Publishing Group; 2014;68:1179–85. doi:10.1038/ejcn.2014.173.
  • Filomeni G, Graziani I, de Zio D, Dini L, Centonze D, Rotilio G, et al. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging [Internet]. Elsevier Inc. 2012;33:767–85. doi:10.1016/j.neurobiolaging.2010.05.021.
  • Pan X, Liu X, Zhao H, Wu B, Liu G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J Funct Foods. 2020;74:0–8. doi:10.1016/j.jff.2020.104140.
  • Berger A, Venturelli S, Kallnischkies M, Böcker A, Busch C, Weiland T, et al. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem [Internet]. Elsevier Inc. 2013;24:977–85. doi:10.1016/j.jnutbio.2012.07.001.
  • Shen Y, Wu Q, Shi J, Zhou S. Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson’s disease. Biomed Pharmacother [Internet]. Elsevier Masson SAS. 2020;132:110928. doi:10.1016/j.biopha.2020.110928.
  • Sarubbo F, Moranta D, Asensio VJ, Miralles A, Esteban S. Effects of resveratrol and other polyphenols on the most common brain age-related diseases. Curr Med Chem. 2017;24(38):4245–66. doi:10.2174/0929867324666170724102743.
  • Arbo BD, André-Miral C, Nasre-Nasser RG, Schimith LE, Santos MG, Costa-Silva D, et al. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front Aging Neurosci. 2020;12:1–15. doi:10.3389/fnagi.2020.00103.
  • Lin KL, Lin KJ, Wang PW, Chuang JH, Lin HY, Der CS, et al. Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy. Free Radic Res [Internet]. Taylor & Francis. 2018;52(11–12):1371–86. doi:10.1080/10715762.2018.1489128.
  • Liu Q, Zhu D, Jiang P, Tang X, Lang Q, Yu Q, et al. Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice. Behav Brain Res [Internet]. Elsevier. 2019;367:10–8. doi:10.1016/j.bbr.2019.03.043.
  • Li W, Yang X, Song Q, Cao Z, Shi Y, Deng Y, et al. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease. Bioorg Chem [Internet]. Elsevier. 2020;97:103707. doi:10.1016/j.bioorg.2020.103707.
  • Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic regulatory mechanisms induced by resveratrol. Nutrients. 2017;9:1–27. doi:10.3390/nu9111201.
  • Wang ZH, Zhang JL, Duan YL, Zhang QS, Li GF, Zheng DL. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed Pharmacother [Internet]. Elsevier Masson SAS. 2015;74:252–6. doi:10.1016/j.biopha.2015.08.025.
  • Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. NeuroSignals. 2011;19:163–74. doi:10.1159/000328516.
  • Ramírez-Garza SL, Laveriano-Santos EP, Marhuenda-Muñoz M, Storniolo CE, Tresserra-Rimbau A, Vallverdú-Queralt A, Lamuela-Raventós RM. Health effects of resveratrol: results from human intervention trials. Nutrients. 2018;10(12):1892. doi:10.3390/nu10121892.
  • Júnior AL G, Islam MT, Nicolau LAD, De Souza LKM, Araújo TdS, Lopes De Oliveira GA, et al. Anti-inflammatory, antinociceptive, and antioxidant properties of anacardic acid in experimental models. ACS Omega. 2020;5(31):19506–15. doi:10.1021/acsomega.0c01775.
  • Medeiros-Linard CFB, Andrade-da-Costa BdS, Augusto RL, Sereniki A, Trevisan MTS, Perreira RdC, de Souza FTC, et al. Anacardic acids from cashew nuts prevent behavioral changes and oxidative stress induced by rotenone in a rat model of Parkinson’s disease. Neurotox Res. 2018;34:250–62. doi:10.1007/s12640-018-9882-6.
  • Augusto RL, Mendonça IP, de Albuquerque Rego GN, Pereira DD, da Penha Gonçalves LV, dos Santos ML, et al. Purified anacardic acids exert multiple neuroprotective effects in pesticide model of Parkinson’s disease: in vivo and in silico analysis. IUBMB Life. 2020;72:1765–79. doi:10.1002/iub.2304.
  • Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging drug targets. Drug Discov Today. 2009;14(19–20):942–8. doi:10.1016/j.drudis.2009.06.008.
  • Mazumder MK, Bhattacharjee N, Borah A. Garcinol prevents hyperhomocysteinemia and enhances bioavailability of L-DOPA by inhibiting catechol-O-methyltransferase: An in silico approach. Med Chem Res. Springer US. 2016;25:116–22. doi:10.1007/s00044-015-1472-z.
  • Mazumder MK, Paul R, Phukan BC, Dutta A, Chakrabarty J, Bhattacharya P, et al. Garcinol, an effective monoamine oxidase-B inhibitor for the treatment of Parkinson’s disease. Med Hypotheses [Internet]. 2018;117:54–8. doi:10.1016/j.mehy.2018.06.009.
  • Deb S, Phukan BC, Mazumder MK, Dutta A, Paul R, Bhattacharya P, et al. Garcinol, a multifaceted sword for the treatment of Parkinson’s disease. Neurochem Int [Internet]. Elsevier. 2019;128:50–7. doi:10.1016/j.neuint.2019.04.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.