Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 3
1,994
Views
2
CrossRef citations to date
0
Altmetric
Research Article

CNS serotonin content mediating food deprivation-enhanced learning is regulated by hemolymph tryptophan concentration and autophagic flux in the pond snail

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Mattson MP. Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence. Ageing Res Rev. 2015;20:37–45. doi:10.1016/j.arr.2014.12.011
  • Prasad C. We are what we eat. Nutr Neurosci. 1998;1:1–1. doi:10.1080/1028415X.1998.11747207
  • Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A, et al. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci. 2018;19(2):81–94. doi:10.1038/nrn.2017.156
  • Gudden J, Vasquez AA, Bloemendaal M. The effects of intermittent fasting on brain and cognitive function. Nutrients. 2021;13(9):3166. doi:10.3390/nu13093166
  • Xia SZ, Liu L, Feng CH, GUO A, et al. Nutritional effects on operant visual learning in Drosophila melanogaster. Physiol Behav. 1997;62(2):263–271. doi:10.1016/S0031-9384(97)00113-3
  • Gailliot MT, Baumeister RF. The physiology of willpower: linking blood glucose to self-control. Personal Soc Psychol Rev. 2007;11(4):303–327. doi:10.1177/1088868307303030
  • Qi Y, Yang Y. Hunger states control the directions of synaptic plasticity via switching cell type-specific subunits of NMDA receptors. J Neurosci. 2015;35(38):13171–13182. doi:10.1523/JNEUROSCI.0855-15.2015
  • Aonuma H, Totani Y, Kaneda M, Nakamura R, Watanabe T, Hatakeyama D, et al. Effects of 5-HT and insulin on learning and memory formation in food-deprived snails. Neurobiol Learn Mem. 2018;148:20–29. doi:10.1016/j.nlm.2017.12.010
  • Teng LL, Lu GL, Chiou LC, Lin W-S, Cheng Y-Y, Hsueh T-E, et al. Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction–induced memory enhancement. PLoS Biol. 2019;17(3):e2007097. doi:10.1371/journal.pbio.2007097
  • Brünner B, Saumweber J, Samur M, Schumann I, Mahishi D, Rohwedder A, Thum AS, et al. Food restriction reconfigures naïve and learned choice behavior in Drosophila larvae. J Neurogenet. 2020;34(1):123–132. doi:10.1080/01677063.2020.1714612
  • Totani Y, Nakai J, Dyakonova VE, Lukowiak K, Sakakibara M, Ito E, et al. Induction of LTM following an insulin injection. eNeuro. 2020;7:2), ENEURO.0088-20.2020. doi:10.1523/ENEURO.0088-20.2020
  • Sunada H, Totani Y, Nakamura R, Sakakibara M, Lukowiak K, Ito E, et al. Two strains of Lymnaea stagnalis and the progeny from their mating display differential memory-forming ability on associative learning tasks. Front Behav Neurosci. 2017;11:161. doi:10.3389/fnbeh.2017.00161
  • Nakai J, Totani Y, Kojima S, Sakakibara M, Ito E, et al. Features of behavioral changes underlying conditioned taste aversion in the pond snail Lymnaea stagnalis. Invert Neurosci. 2020;20(2):8. doi:10.1007/s10158-020-00241-7
  • Totani Y, Kotani S, Odai K, Ito E, Sakakibara M, et al. Real-time analysis of animal feeding behavior with a low-calculation-power CPU. IEEE Trans Biomed Eng. 2020;67(4):1197–1205. doi:10.1109/TBME.2019.2933243
  • Bernstein IL. Taste aversion learning: A contemporary perspective. Nutrition. 1999;15(3):229–234. doi:10.1016/S0899-9007(98)00192-0
  • Kojima S, Yamanaka M, Fujito Y, Kojima S, Yamanaka M, Fujito Y, Ito E, et al. Differential neuroethological effects of aversive and appetitive reinforcing stimuli on associative learning in Lymnaea stagnalis. Zool Sci. 1996;13(6):803–812. doi:10.2108/zsj.13.803
  • Nakai J, Totani Y, Hatakeyama D, Dyakonova VE, Ito E. Another example of conditioned taste aversion: Case of snails. Biology. 2020;9(12):422.
  • Totani Y, Nakai J, Hatakeyama D, Ito E, et al. Memory-enhancing effects of short-term fasting. Eur Zool J. 2020;87(1):597–602. doi:10.1080/24750263.2020.1827053
  • Sugai R, Azami S, Shiga H, Watanabe T, Sadamoto H, Kobayashi S, et al. One-trial conditioned taste aversion in lymnaea: good and poor performers in long-term memory acquisition. J Exp Biol. 2007;210(7):1225–1237. doi:10.1242/jeb.02735
  • Mita K, Okuta A, Okada R, Hatakeyama D, Otsuka E, Yamagishi M, Morikawa M, et al. What are the elements of motivation for acquisition of conditioned taste aversion? Neurobiol Learn Mem. 2014;107:1–12. doi:10.1016/j.nlm.2013.10.013
  • Mita K, Yamagishi M, Fujito Y, Lukowiak K, et al. An increase in insulin is important for the acquisition conditioned taste aversion in lymnaea. Neurobiol Learn Mem. 2014;116:132–138. doi:10.1016/j.nlm.2014.10.006
  • Ito E, Yamagishi M, Hatakeyama D, Watanabe T, Fujito Y, Dyakonova V, Lukowiak K, et al. Memory block: a consequence of conflict resolution. J Exp Biol. 2015;218(11):1699–1704.
  • Aonuma H, Totani Y, Sakakibara M, Lukowiak K, Ito E, et al. Comparison of brain monoamine content in three populations of Lymnaea that correlates with taste-aversive learning ability. Biophys Physicobiology. 2018;15:129–135. doi:10.2142/biophysico.15.0_129
  • Totani Y, Aonuma H, Oike A, Watanabe T, Hatakeyama D, Sakakibara M, et al. Monoamines, insulin and the roles they play in associative learning in pond snails. Front Behav Neurosci. 2019;13:65. doi:10.3389/fnbeh.2019.00065
  • Chaouloff F, Laude D, Merino D, Serrurrier B, Guezennec Y, Elghozi JL, et al. Amphetamine and α-methyl-p-tyrosine affect the exercise-induced imbalance between the availability of tryptophan and synthesis of serotonin in the brain of the rat. Neuropharmacology. 1987;26(8):1099–1106. doi:10.1016/0028-3908(87)90254-1
  • Keszthelyi D, Troost FJ, Masclee AAM. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil. 2009;21(12):1239–1249. doi:10.1111/j.1365-2982.2009.01370.x
  • Bell C, Abrams J, Nutt D. Tryptophan depletion and its implications for psychiatry. Br J Psychiatry. 2001;178:399–405. doi:10.1192/bjp.178.5.399
  • Höglund E, Øverli Ø, Winberg S. Tryptophan metabolic pathways and brain serotonergic activity: A comparative review. Front Endocrinol. 2019;10:158. doi:10.3389/fendo.2019.00158
  • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–741. doi:10.1016/j.cell.2011.10.026
  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15(3):1101–1111. doi:10.1091/mbc.e03-09-0704
  • Klionsky DJ, Abdel-Aziz AK, Abdlefatah S, Abdelfatah S, Abdellatif M, Abdoli A, Abel SA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021;17(1):1–382. doi:10.1080/15548627.2020.1797280
  • Nikoletopoulou V, Sidiropoulou K, Kallergi E. Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab. 2017;26(1):230–242 e5. doi: 10.1016/j.cmet.2017.06.005.
  • Zhan Z, Wu Y, Liu Z, Quan Y, Li D, Huang Y, et al. Reduced dendritic spines in the visual cortex contralateral to the optic nerve crush eye in adult mice. Invest Ophthalmol Vis Sci. 2020;61(10):55. doi:10.1167/iovs.61.10.55
  • Fainzilber M, Smit AB, Syed NI, Wildering WC, Hermann PM, van der Schors RC, et al. CRNF, a molluscan neurotrophic factor that interacts with the p75 neurotrophin receptor. Science. 1996;274(5292):1540–1543. doi:10.1126/science.274.5292.1540
  • Pu L, Kopec AM, Boyle HD, Carew TJ. A novel cysteine-rich neurotrophic factor in Aplysia facilitates growth, MAPK activation, and long-term synaptic facilitation. Learn Mem. 2014;21(4):215–222. doi:10.1101/lm.033662.113
  • Beck G, Munno DW, Levy Z, Dissel HM, van-Minnen J, Syed NI, Fainzilber M, et al. Neurotrophic activities of trk receptors conserved over 600 million years of evolution. J Neurobiol. 2004;60(1):12–20. doi:10.1002/neu.10329
  • Martinet W, Meyer GD, Andries L, De Meyer GRY, Herman AG, Kockx MM. In situ detection of starvation-induced autophagy. J Histochem Cytochem. 2016;54(1):85–96.
  • Mitroulis I, Kourtzelis I, Kambas K, Rafail S, Chrysanthopoulou A, Speletas M, Ritis K, et al. Regulation of the autophagic machinery in human neutrophils. Eur J Immunol. 2010;40(5):1461–1472. doi:10.1002/eji.200940025
  • Song Q, Liu H, Zhen H, Zhao B, et al. Autophagy and its role in regeneration and remodeling within invertebrate. Cell Biosci. 2020;10:111. doi:10.1186/s13578-020-00467-3
  • Picot S, Faury N, Arzul I, Chollet B, Renault T, Morga B, et al. Identification of the autophagy pathway in a mollusk bivalve, Crassostrea gigas. Autophagy. 2020;16(11):2017–2035. doi:10.1080/15548627.2020.1713643
  • Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy. 2014;10(3):431–441. doi:10.4161/auto.27344
  • Aonuma H, Mezheritskiy M, Boldyshev B, Totani Y, Vorontsov D, Zakharov I, et al. The role of serotonin in the influence of intense locomotion on the behavior under uncertainty in the mollusk Lymnaea stagnalis. Front Physiol. 2020;11:221. doi:10.3389/fphys.2020.00221
  • Dyakonova V, Hernádi L, Ito E, Zakharov I, Sakharov D, et al. The activity of isolated snail neurons controlling locomotion is affected by glucose. Biophys. 2015;11:55–60. doi:10.2142/biophysics.11.55
  • Dyakonova VE, Hernádi L, Ito E, Chistopolsky IA, Zakharov IS, Sakharov DA. The activity of isolated neurons and the modulatory state of an isolated nervous system represent a recent behavioural state. J Exp Biol. 2015;218(8):1151–1158.
  • Gomes LC, Di BG, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13(5):589–598. doi:10.1038/ncb2220
  • Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–545. doi:10.4161/auto.4600
  • Jahng JW, Kim JG, Kim HJ, Kang D-W, Lee J-H, et al. Chronic food restriction in young rats results in depression- and anxiety-like behaviors with decreased expression of serotonin reuptake transporter. Brain Res. 2007;1150:100–107. doi:10.1016/j.brainres.2007.02.080
  • Cui R, Fan J, Ge T, Tang L, Li B, et al. The mechanism of acute fasting-induced antidepressant-like effects in mice. J Cell Mol Med. 2018;22(1):223–229. doi:10.1111/jcmm.13310
  • Bagherniya M, Butler AE, Barreto GE, Sahebkar A, et al. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res Rev. 2018;47:183–197. doi:10.1016/j.arr.2018.08.004
  • Kohsaka S, Takamatsu K, Tsukada Y. Effect of food restriction on serotonin metabolism in rat brain. Neurochem Res. 1980;5(1):69–79. doi:10.1007/BF00964461
  • Naito T, Kuma A, Mizushima N. Differential contribution of insulin and amino acids to the mTORC1-autophagy pathway in the liver and muscle. J Biol Chem. 2013;288(29):21074–21081. doi:10.1074/jbc.M113.456228
  • Lumeng C, Saltiel AR. Insulin htts on autophagy. Autophagy. 2006;2(3):250–253. doi:10.4161/auto.2788
  • Ribeiro M, López de Figueroa P, Blanco FJ, Mendes AF, Caramés B. Insulin decreases autophagy and leads to cartilage degradation. Osteoarthr Cartil. 2016;24(4):731–739. doi:10.1016/j.joca.2015.10.017