Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 5
550
Views
2
CrossRef citations to date
0
Altmetric
Review

The benefits of grape seed extract in neurological disorders and brain aging

, , , , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Mohammadipour A, Haghir H, Ebrahimzadeh Bideskan A. A link between nanoparticles and Parkinson’s disease. Which nanoparticles are most harmful? Rev Environ Health. 2020;35(4):545–556. doi: 10.1515/reveh-2020-0043.
  • Bigham M, Mohammadipour A, Hosseini M, Malvandi AM, Ebrahimzadeh-Bideskan A. Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson’s disease: motor and non-motor outcomes. Metab Brain Dis. 2021 Jun;36(5):927–937. doi: 10.1007/s11011-021-00705-8.
  • Xu L, He D, Bai Y. Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol. 2016;53(10):6709–6715. doi: 10.1007/s12035-015-9593-4.
  • Zhao S, Zhang L, Yang C, Li Z, Rong S. Procyanidins and alzheimer’s disease. Mol Neurobiol. 2019 Aug;56(8):5556–5567. doi: 10.1007/s12035-019-1469-6.
  • Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. Environ Sci Pollut Res Int. 2021;28(25):32156–32176. doi: 10.1007/s11356-021-14146-4.
  • Heidari Z, Mohammadipour A, Haeri P, Ebrahimzadeh-Bideskan A. The effect of titanium dioxide nanoparticles on mice midbrain substantia nigra. Iran J Basic Med Sci. 2019 Jul;22(7):745–751. doi: 10.22038/ijbms.2019.33611.8018.
  • Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A. Roles of the miR-155 in neuroinflammation and neurological disorders: a potent biological and therapeutic target. Cell Mol Neurobiol. 2022 Feb 2. doi: 10.1007/s10571-022-01200-z. Epub ahead of print. PMID: 35107690.
  • Almeida Silva LF, Reschke CR, Nguyen NT, Langa E, Sanz-Rodriguez A, Gerbatin RR, et al. Genetic deletion of microRNA-22 blunts the inflammatory transcriptional response to status epilepticus and exacerbates epilepsy in mice. Mol Brain. 2020 Aug 21;13(1):114), doi: 10.1186/s13041-020-00653-x.
  • Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current status of microRNA-based therapeutic approaches in neurodegenerative disorders. Cells. 2020 Jul 15;9(7):1698), doi: 10.3390/cells9071698.
  • Tonacci A, Bagnato G, Pandolfo G, Billeci L, Sansone F, Conte R, et al. MicroRNA cross-involvement in autism spectrum disorders and atopic dermatitis: a literature review. J Clin Med. 2019 Jan 14;8(1):88), doi: 10.3390/jcm8010088.
  • Barbe A, Ramé C, Mellouk N, Estienne A, Bongrani A, Brossaud A, et al. Effects of grape seed extract and proanthocyanidin B2 on in vitro proliferation, viability, steroidogenesis, oxidative stress, and cell signaling in human granulosa cells. Int J Mol Sci. 2019 Aug 28;20(17):4215), doi: 10.3390/ijms20174215.
  • Wang Y, Wang Y, Shen W, Wang Y, Cao Y, Nuerbulati N, et al. Grape seed polyphenols ameliorated dextran sulfate sodium-induced colitis via suppression of inflammation and apoptosis. Pharmacology. 2020;105(1-2):9–18. doi: 10.1159/000501897.
  • Lian Q, Nie Y, Zhang X, Tan B, Cao H, Chen W, et al. Effects of grape seed proanthocyanidin on Alzheimer’s disease in vitro and in vivo. Exp Ther Med. 2016 Sep;12(3):1681–1692. doi: 10.3892/etm.2016.3530.
  • Ben Youssef S, Brisson G, Doucet-Beaupré H, Castonguay AM, Gora C, Amri M, et al. Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson’s disease. Nutr Neurosci. 2021 Mar;24(3):197–211. doi: 10.1080/1028415X.2019.1616435.
  • Vatanpour N, Malvandi AM, Hedayati Talouki H. Impact of rapid urbanization on the surface water’s quality: a long-term environmental and physicochemical investigation of Tajan river, Iran (2007–2017). Environ Sci Pollut Res. 2020;27:8439–8450. Doi: 10.1007/s11356-019-07477-w.
  • Wang J, Pfleger CM, Friedman L, Vittorino R, Zhao W, Qian X, et al. Potential application of grape derived polyphenols in huntington’s disease. Transl Neurosci. 2010 Jun 1;1(2):95–100. doi: 10.2478/v10134-010-0022-y.
  • Xia EQ, Deng GF, Guo YJ, Li HB. Biological activities of polyphenols from grapes. Int J Mol Sci. 2010 Feb 4;11(2):622–46. doi: 10.3390/ijms11020622.
  • Sochorova L, Prusova B, Cebova M, Jurikova T, Mlcek J, Adamkova A, et al. Health effects of grape seed and skin extracts and their influence on biochemical markers. Molecules. 2020 Nov 14;25(22):5311), doi: 10.3390/molecules25225311.
  • Garrido-Bañuelos G, Buica A, Schückel J, Zietsman AJJ, Willats WGT, Moore JP, et al. Investigating the relationship between grape cell wall polysaccharide composition and the extractability of phenolic compounds into Shiraz wines. Part I: vintage and ripeness effects. Food Chem. 2019 Apr 25;278:36–46. doi: 10.1016/j.foodchem.2018.10.134.
  • Simon Duba K, Fiori L. Supercritical CO2 extraction of grape seed oil: effect of process parameters on the extraction kinetics. J Supercrit Fluids. 2015;98:33–43. doi:10.1016/j.supflu.2014.12.021.
  • Rombaut N, Savoire R, Thomasset B, Castello J, Van Hecke E, Lanoiselléd JL. Optimization of oil yield and oil total phenolic content during grape seed cold screw pressing. Ind Crops Prod. 2015;63:26–33. doi:10.1016/j.indcrop.2014.10.001.
  • Berahmand F, Anoush G, Hosseini MJ, Anoush M. Grape seed oil as a natural therapy in male rats with alzheimer’s diseases. Adv Pharm Bull. 2020 Jul;10(3):430–436. doi: 10.34172/apb.2020.052.
  • Garavaglia J, Markoski MM, Oliveira A, Marcadenti A. Grape seed oil compounds: biological and chemical actions for health. Nutr Metab Insights. 2016 Aug 16;9:59–64. doi: 10.4137/NMI.S32910.
  • Alkhedaide A, Alshehri ZS, Sabry A, Abdel-Ghaffar T, Soliman MM, Attia H. Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Mol Med Rep. 2016 Apr;13(4):3101–9. doi: 10.3892/mmr.2016.4928.
  • Kim Y, Choi Y, Ham H, Jeong HS, Lee J. Protective effects of oligomeric and polymeric procyanidin fractions from defatted grape seeds on tert-butyl hydroperoxide-induced oxidative damage in HepG2 cells. Food Chem. 2013 Apr 15;137(1-4):136–41. doi: 10.1016/j.foodchem.2012.10.006.
  • Hernández-Jiménez A, Gómez-Plaza E, Martínez-Cutillas A, Kennedy JA. Grape skin and seed proanthocyanidins from Monastrell x Syrah grapes. J Agric Food Chem. 2009 Nov 25;57(22):10798–803. doi: 10.1021/jf903465p.
  • Tarawneh R, Holtzman DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med. 2012;2(5):a006148), doi: 10.1101/cshperspect.a006148.
  • Pasinetti GM, Ksiezak-Reding H, Santa-Maria I, Wang J, Ho L. Development of a grape seed polyphenolic extract with anti-oligomeric activity as a novel treatment in progressive supranuclear palsy and other tauopathies. J Neurochem. 2010 Sep;114(6):1557–68. doi: 10.1111/j.1471-4159.2010.06875.x.
  • Nelson PT, Braak H, Markesbery WR. Neuropathology and cognitive impairment in alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol. 2009;68(1):1–14. doi: 10.1097/NEN.0b013e3181919a48.
  • Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of alzheimer’s disease. Molecules. 2017 Feb 13;22(2):277), doi: 10.3390/molecules22020277.
  • Guerrero-Muñoz MJ, Castillo-Carranza DL, Kayed R. Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins. Biochem Pharmacol. 2014;88:468–478. Doi: 10.1016/j.bcp.2013.12.023.
  • Saito T, Saido TC. Neuroinflammation in mouse models of Alzheimer’s disease. Clin Exp Neuroimmunol. 2018;9(4):211–218. doi: 10.1111/cen3.12475.
  • Crack PJ, Cimdins K, Ali U, Hertzog PJ, Iannello RC. Lack of glutathione peroxidase-1 exacerbates Abeta-mediated neurotoxicity in cortical neurons. J Neural Transm (Vienna). 2006 May;113(5):645–57. doi: 10.1007/s00702-005-0352-y.
  • Gao WL, Li XH, Dun XP, Jing XK, Yang K, Li YK. Grape seed proanthocyanidin extract ameliorates streptozotocin-induced cognitive and synaptic plasticity deficits by inhibiting oxidative stress and preserving AKT and ERK activities. Curr Med Sci. 2020 Jun;40(3):434–443. doi: 10.1007/s11596-020-2197-x.
  • Dong C. Protective effect of proanthocyanidins in cadmium induced neurotoxicity in mice. Drug Res (Stuttg). 2015;65(10):555–60. doi: 10.1055/s-0034-1395544.
  • Mantena SK, Katiyar SK. Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling in human epidermal keratinocytes. Free Radic Biol Med. 2006;40(9):1603–14. doi: 10.1016/j.freeradbiomed.2005.12.032.
  • Sun Q, Jia N, Li X, Yang J, Chen G. Grape seed proanthocyanidins ameliorate neuronal oxidative damage by inhibiting GSK-3β-dependent mitochondrial permeability transition pore opening in an experimental model of sporadic Alzheimer’s disease. Aging (Albany NY). 2019 Jun 24;11(12):4107–4124. doi: 10.18632/aging.102041.
  • Vivancos M, Moreno JJ. Effect of resveratrol, tyrosol and beta-sitosterol on oxidised low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages. Br J Nutr. 2008;99(6):1199–207. doi: 10.1017/S0007114507876203.
  • Leifert WR, Abeywardena MY. Grape seed and red wine polyphenol extracts inhibit cellular cholesterol uptake, cell proliferation, and 5-lipoxygenase activity. Nutr Res. 2008;28(12):842–50. doi: 10.1016/j.nutres.2008.09.001.
  • Ben Nasr M, D’Addio F, Malvandi AM, Faravelli S, Castillo-Leon E, Usuelli V, et al. Prostaglandin E2 stimulates the expansion of regulatory hematopoietic stem and progenitor cells in type 1 diabetes. Front Immunol. 2018 Jun 19;9:1387), doi: 10.3389/fimmu.2018.01387.
  • Liu Y, Pukala TL, Musgrave IF, Williams DM, Dehle FC, Carver JA. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation. Bioorg Med Chem Lett. 2013 Dec 1;23(23):6336–40. doi: 10.1016/j.bmcl.2013.09.071.
  • Carver JA, Duggan PJ, Ecroyd H, Liu Y, Meyer AG, Tranberg CE. Carboxymethylated-kappa-casein: a convenient tool for the identification of polyphenolic inhibitors of amyloid fibril formation. Bioorg Med Chem. 2010 Jan 1;18(1):222–8. doi: 10.1016/j.bmc.2009.10.063.
  • Thorn DC, Meehan S, Sunde M, Rekas A, Gras SL, MacPhee CE, et al. Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alphaS- and beta-casein. Biochemistry. 2005 Dec 27;44(51):17027–36. doi: 10.1021/bi051352r.
  • Liu P, Kemper LJ, Wang J, Zahs KR, Ashe KH, Pasinetti GM. Grape seed polyphenolic extract specifically decreases aβ*56 in the brains of Tg2576 mice. J Alzheimers Dis. 2011;26(4):657–66. doi: 10.3233/JAD-2011-110383.
  • Vahidi-Ferdowsi P, Mehrzad J, Malvandi A, Hosseinkhani S. Bioluminescence-based detection of astrocytes apoptosis and ATP depletion induced by biologically relevant level aflatoxin B1. World Mycotoxin Journal. 2018;11(4):589–98.
  • Ordonez DG, Lee MK, Feany MB. α-Synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron. 2018;97(1):108–124.e6. doi: 10.1016/j.neuron.2017.11.036.
  • Paillusson S, Gomez-Suaga P, Stoica R, Little D, Gissen P, Devine MJ, et al. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 2017 Jul;134(1):129–149. doi: 10.1007/s00401-017-1704-z.
  • Tikhonova MA, Tikhonova NG, Tenditnik MV, Ovsyukova MV, Akopyan AA, Dubrovina NI, et al. Effects of grape polyphenols on the life span and neuroinflammatory alterations related to neurodegenerative parkinson disease-like disturbances in mice. Molecules. 2020 Nov 16;25(22):5339), doi: 10.3390/molecules25225339.
  • Bao L, Cai X, Dai X, Ding Y, Jiang Y, Li Y, et al. Grape seed proanthocyanidin extracts ameliorate podocyte injury by activating peroxisome proliferator-activated receptor-γ coactivator 1α in low-dose streptozotocin-and high-carbohydrate/high-fat diet-induced diabetic rats. Food Funct. 2014 Aug;5(8):1872–80. doi: 10.1039/c4fo00340c.
  • Pasinetti GM, Wang J, Marambaud P, Ferruzzi M, Gregor P, Knable LA, Ho L. Neuroprotective and metabolic effects of resveratrol: therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp Neurol. 2011;232(1):1–6.
  • Sarkaki A, Eidypour Z, Motamedi F, Keramati K, Farbood Y. Motor disturbances and thalamic electrical power of frequency bands’ improve by grape seed extract in animal model of Parkinson’s disease. Avicenna J Phytomed. Fall 2012;2(4):222–32.
  • Illarioshkin SN, Klyushnikov SA, Vigont VA, Seliverstov YA, Kaznacheyeva EV. Molecular pathogenesis in huntington’s disease. Biochemistry (Mosc). 2018 Sep;83(9):1030–1039. doi: 10.1134/S0006297918090043.
  • Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med. 2017 Jul 5;7(7):a024240), doi: 10.1101/cshperspect.a024240.
  • Kilroy E, Cermak SA, Aziz-Zadeh L. A review of functional and structural neurobiology of the action observation network in autism spectrum disorder and developmental coordination disorder. Brain Sci. 2019;9(4):75), doi: 10.3390/brainsci9040075.
  • Arafat EA, Shabaan DA. The possible neuroprotective role of grape seed extract on the histopathological changes of the cerebellar cortex of rats prenatally exposed to valproic acid: animal model of autism. Acta Histochem. 2019;121(7):841–851. doi: 10.1016/j.acthis.2019.08.002.
  • Liao X, Yang J, Wang H, Li Y. Microglia mediated neuroinflammation in autism spectrum disorder. J Psychiatr Res. 2020 Nov;130:167–176. doi: 10.1016/j.jpsychires.2020.07.013.
  • Manivasagam T, Arunadevi S, Essa MM, SaravanaBabu C, Borah A, Thenmozhi AJ, et al. Role of oxidative stress and antioxidants in autism. Adv Neurobiol. 2020;24:193–206. doi: 10.1007/978-3-030-30402-7_7.
  • Siniscalco D, Schultz S, Brigida AL, Antonucci N. Inflammation and neuro-immune dysregulations in autism spectrum disorders. Pharmaceuticals (Basel). 2018 Jun 4;11(2):56), doi: 10.3390/ph11020056.
  • Rajput SA, Sun L, Zhang NY, Khalil MM, Ling Z, Chong L, et al. Grape seed proanthocyanidin extract alleviates aflatoxinB₁-induced immunotoxicity and oxidative stress via modulation of NF-κB and Nrf2 signaling pathways in broilers. Toxins (Basel). 2019 Jan 7;11(1):23), doi: 10.3390/toxins11010023.
  • Zinovkin RA, Grebenchikov OA. Transcription factor Nrf2 as a potential therapeutic target for prevention of cytokine storm in COVID-19 patients. Biochemistry (Mosc). 2020 Jul;85(7):833–837. doi: 10.1134/S0006297920070111.
  • Samimi P, Edalatmanesh MA. The effect of gallic acid on histopathologic evaluation of cerebellum in valproic acid-induced autism animal models. International Journal of Medical Research & Health Sciences. 2016;5(6):164–171.
  • Zhen J, Qu Z, Fang H, Fu L, Wu Y, Wang H, et al. Effects of grape seed proanthocyanidin extract on pentylenetetrazole-induced kindling and associated cognitive impairment in rats. Int J Mol Med. 2014 Aug;34(2):391–8. doi: 10.3892/ijmm.2014.1796.
  • Butler T, Li Y, Tsui W, Friedman D, Maoz A, Wang X, et al. Transient and chronic seizure-induced inflammation in human focal epilepsy. Epilepsia. 2016 Sep;57(9):e191–4. doi: 10.1111/epi.13457.
  • Rom AL, Wu CS, Olsen J, Jawaheer D, Hetland ML, Christensen J, et al. Parental rheumatoid arthritis and childhood epilepsy: a nationwide cohort study. Neurology. 2016;87:2510–16.
  • Acar G, Tanriover G, Acar F, Demir R. Increased expression of matrix metalloproteinase-9 in patients with temporal lobe epilepsy. Turk Neurosurg. 2015;25(5):749–56. doi: 10.5137/1019-5149.
  • Gross A, Benninger F, Madar R, Illouz T, Griffioen K, Steiner I, et al. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice. Epilepsia. 2017;58:586–96.
  • Costello DA, Lynch MA. Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-β. Hippocampus. 2013;23:696–707.
  • Dong Z, Pan K, Pan J, Peng Q, Wang Y. The possibility and molecular mechanisms of cell pyroptosis after cerebral ischemia. Neurosci Bull. 2018 Dec;34(6):1131–1136. doi: 10.1007/s12264-018-0294-7.
  • Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407(6805):802–9. doi: 10.1038/35037739.
  • Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY. Autophagy in ischemic stroke. Prog Neurobiol. 2018 Apr-May;163-164:98–117. doi: 10.1016/j.pneurobio.2018.01.001.
  • Hu Y, Deng H, Xu S, Zhang J. MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion injury. Int J Mol Sci. 2015;16(10):24895–917. doi: 10.3390/ijms161024895.
  • Kadri S, El Ayed M, Limam F, Aouani E, Mokni M. Preventive and curative effects of grape seed powder on stroke using in vitro and in vivo models of cerebral ischemia/reperfusion. Biomed Pharmacother. 2020 May;125:109990), doi: 10.1016/j.biopha.2020.109990.
  • Kadri S, El Ayed M, Cosette P, Jouenne T, Elkhaoui S, Zekri S, et al. Neuroprotective effect of grape seed extract on brain ischemia: a proteomic approach. Metab Brain Dis. 2019 Jun;34(3):889–907. doi: 10.1007/s11011-019-00396-2.
  • Ikemoto A, Bole DG, Ueda T. Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J Biol Chem. 2003;278(8):5929–40. doi: 10.1074/jbc.M211617200.
  • Zhai D, Chin K, Wang M, Liu F. Disruption of the nuclear p53-GAPDH complex protects against ischemia-induced neuronal damage. Mol Brain. 2014;7:20), doi: 10.1186/1756-6606-7-20.
  • Minhas G, Modgil S, Anand A. Role of iron in ischemia-induced neurodegeneration: mechanisms and insights. Metab Brain Dis. 2014;29(3):583–91. doi: 10.1007/s11011-014-9522-7.
  • Yun S, He X, Zhang W, Chu D, Feng C. Alleviation effect of grape seed proanthocyanidins on neuronal apoptosis in rats with iron overload. Biol Trace Elem Res. 2020 Mar;194(1):210–220. doi: 10.1007/s12011-019-01766-8.
  • Fu K, Chen L, Hu S, Guo Y, Zhang W, Bai Y. Grape seed proanthocyanidins attenuate apoptosis in ischemic stroke. Acta Neurol Belg. 2021 Apr;121(2):357–364. doi: 10.1007/s13760-019-01111-9.
  • Alrefaie Z. Grape seed proanthocyanidins attenuate anxiety-like behavior in an experimental model of dietary-induced hypercholesterolemia in rats. Int J Vitam Nutr Res. 2015;85(5-6):282–291. doi: 10.1024/0300-9831/a000286.
  • Terauchi M, Horiguchi N, Kajiyama A, Akiyoshi M, Owa Y, Kato K, et al. Effects of grape seed proanthocyanidin extract on menopausal symptoms, body composition, and cardiovascular parameters in middle-aged women: a randomized, double-blind, placebo-controlled pilot study. Menopause. 2014 Sep;21(9):990–6. doi: 10.1097/GME.0000000000000200.
  • Jiang C, Sakakibara E, Lin WJ, Wang J, Pasinetti GM, Salton SR. Grape-derived polyphenols produce antidepressant effects via VGF- and BDNF-dependent mechanisms. Ann N Y Acad Sci. 2019 Nov;1455(1):196–205. doi: 10.1111/nyas.14098.
  • Sreemantula S, Nammi S, Kolanukonda R, Koppula S, Boini KM. Adaptogenic and nootropic activities of aqueous extract of Vitis vinifera (grape seed): an experimental study in rat model. BMC Complement Altern Med. 2005;5(1). doi: 10.1186/1472-6882-5-1.
  • Ward L, Pasinetti GM. Recommendations for development of botanical polyphenols as “natural drugs” for promotion of resilience against stress-induced depression and cognitive impairment. Neuromolecular Med. 2016 Sep;18(3):487–95. doi: 10.1007/s12017-016-8418-6.
  • Zhao X, Liu F, Jin H, Li R, Wang Y, Zhang W, et al. Involvement of PKCα and ERK1/2 signaling pathways in EGCG's protection against stress-induced neural injuries in Wistar rats. Neuroscience. 2017;346:226–237. doi: 10.1016/j.neuroscience.2017.01.025.
  • Donoso F, Egerton S, Bastiaanssen TFS, Fitzgerald P, Gite S, Fouhy F, et al. Polyphenols selectively reverse early-life stress-induced behavioural, neurochemical and microbiota changes in the rat. Psychoneuroendocrinology. 2020;116:104673), doi: 10.1016/j.psyneuen.2020.104673.
  • Freitas HR, Ferreira GDC, Trevenzoli IH, Oliveira KJ, de Melo Reis RA. Fatty acids, antioxidants and physical activity in brain aging. Nutrients. 2017 Nov 20;9(11):1263), doi: 10.3390/nu9111263.
  • Fani M, Mohammadipour A, Ebrahimzadeh-Bideskan A. The effect of crocin on testicular tissue and sperm parameters of mice offspring from mothers exposed to atrazine during pregnancy and lactation periods: an experimental study. Int J Reprod Biomed. 2018 Aug;16(8):519–528. PMID: 30288486.
  • Balu M, Sangeetha P, Murali G, Panneerselvam C. Age-related oxidative protein damages in central nervous system of rats: modulatory role of grape seed extract. Int J Dev Neurosci. 2005 Oct;23(6):501–7. doi: 10.1016/j.ijdevneu.2005.06.001.
  • Asha Devi S, Sagar Chandrasekar BK, Manjula KR, Ishii N. Grape seed proanthocyanidin lowers brain oxidative stress in adult and middle-aged rats. Exp Gerontol. 2011 Nov;46(11):958–64. doi: 10.1016/j.exger.2011.08.006.
  • Baradaran R, Khoshdel-Sarkarizi H, Kargozar S, Hami J, Mohammadipour A, Sadr-Nabavi A, et al. Developmental regulation and lateralisation of the α7 and α4 subunits of nicotinic acetylcholine receptors in developing rat hippocampus. Int J Dev Neurosci. 2020;80(4):303–318. doi: 10.1002/jdn.10026.
  • Rastegar-Moghaddam SH, Mohammadipour A, Hosseini M, Bargi R, Ebrahimzadeh-Bideskan A. Maternal exposure to Atrazine induces the hippocampal cell apoptosis in mice offspring and impairs their learning and spatial memory. Toxin Rev. 2019;38(4):298–306. doi: 10.1080/15569543.2018.1466804.
  • Devi SA, Abhijit S. Integration of qRT-PCR and immunohistochemical techniques for mRNA expression and localization of m1AChR in the brain of aging rat. Methods Mol Biol. 2020;2138:323–336. doi: 10.1007/978-1-0716-0471-7_23.
  • Rastegar-Moghaddam SH, Bigham M, Hosseini M, Ebrahimzadeh-Bideskan A, Malvandi AM, Mohammadipour A. Grape seed extract effects on hippocampal neurogenesis, synaptogenesis and dark neurons production in old mice. Can this extract improve learning and memory in aged animals? Nutr Neurosci. 2021 May 10: 1–11. doi: 10.1080/1028415X.2021.1918983. Epub ahead of print. PMID: 33970818.
  • Martinez B, Peplow PV. MicroRNAs as disease progression biomarkers and therapeutic targets in experimental autoimmune encephalomyelitis model of multiple sclerosis. Neural Regen Res. 2020 Oct;15(10):1831–1837. doi: 10.4103/1673-5374.280307.
  • Nielsen JA, Lau P, Maric D, Barker JL, Hudson LD. Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis. BMC Neurosci. 2009 Aug 19;10:98), doi: 10.1186/1471-2202-10-98.
  • Kou X, Chen D, Chen N. The regulation of microRNAs in alzheimer’s disease. Front Neurol. 2020 Apr 17;11:288), doi: 10.3389/fneur.2020.00288.
  • García-Ramírez B, Fernandez-Larrea J, Salvadó MJ, Ardèvol A, Arola L, Bladé C. Tetramethylated dimeric procyanidins are detected in rat plasma and liver early after oral administration of synthetic oligomeric procyanidins. J Agric Food Chem. 2006 Apr 5;54(7):2543–51. doi: 10.1021/jf0527753.
  • Arola-Arnal A, Bladé C. Proanthocyanidins modulate microRNA expression in human HepG2 cells. PLoS One. 2011;6(10):e25982), doi: 10.1371/journal.pone.0025982.
  • Shao D, Di Y, Lian Z, Zhu B, Xu X, Guo D, et al. Grape seed proanthocyanidins suppressed macrophage foam cell formation by miRNA-9 via targeting ACAT1 in THP-1 cells. Food Funct. 2020 Feb 26;11(2):1258–1269. doi: 10.1039/c9fo02352f.
  • Liu B, Jiang H, Lu J, Baiyun R, Li S, Lv Y, et al. Grape seed procyanidin extract ameliorates lead-induced liver injury via miRNA153 and AKT/GSK-3β/Fyn-mediated Nrf2 activation. J Nutr Biochem. 2018 Feb;52:115–123. doi: 10.1016/j.jnutbio.2017.09.025.
  • Mao JT, Xue B, Smoake J, Lu QY, Park H, Henning SM, et al. MicroRNA-19a/b mediates grape seed procyanidin extract-induced antineoplastic effects against lung cancer. J Nutr Biochem. 2016 Aug;34:118–25. doi: 10.1016/j.jnutbio.2016.05.003.
  • Xue B, Lu QY, Massie L, Qualls C, Mao JT. Grape seed procyanidin extract against lung cancer: the role of microrna-106b, bioavailability, and bioactivity. Oncotarget. 2018 Feb 16;9(21):15579–15590. doi: 10.18632/oncotarget.24528.
  • Furtado NA, Pirson L, Edelberg H, Miranda L M, Loira-Pastoriza C, Preat V, et al. Pentacyclic triterpene bioavailability: an overview of in vitro and in vivo studies. Molecules. 2017;22(3):400), doi: 10.3390/molecules22030400.
  • Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009;14(3):226–46. PMID: 19803548.
  • Magbool FAR, Elnima EI, Hussein SEO. Formulation approaches to enhance drug solubility-brief overview. European journal of pharmaceutical and medical research. 2017;5(02):94–100.
  • Dima C, Assadpour E, Dima S, Jafari SM. Bioavailability of nutraceuticals: role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr Rev Food Sci Food Saf. 2020;19(3):954–994. doi: 10.1111/1541-4337.12547.
  • Rodriguez-Mateos A, Feliciano RP, Cifuentes-Gomez T, Spencer JPE. Bioavailability of wild blueberry (poly)phenols at different levels of intake. Journal of berry research. 2016;6(2):137–148. Doi: 10.3233/JBR-160123.
  • Rajakumari R, Volova T, Oluwafemi OS, Rajesh Kumar S, Thomas S, Kalarikkal N. Grape seed extract-soluplus dispersion and its antioxidant activity. Drug Dev Ind Pharm. 2020;46(8):1219–1229. doi: 10.1080/03639045.2020.1788059.
  • Ferruzzi MG, Lobo JK, Janle EM, Cooper B, Simon JE, Wu QL, et al. Bioavailability of gallic acid and catechins from grape seed polyphenol extract is improved by repeated dosing in rats: implications for treatment in alzheimer’s disease. Journal of Alzheimer’s disease. 1 Jane 2009;18(1):113–124.
  • Pasinetti GM, Ho L. Role of grape seed polyphenols in Alzheimer's disease neuropathology. Nutr Diet Suppl. 2010;2010(2):97–103. doi: 10.2147/NDS.S6898.
  • Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Asp Med. 2010 Dec;31(6):446–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.