Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 5
203
Views
0
CrossRef citations to date
0
Altmetric
Review

Pharmacological activity of Aspalathus linearis extracts: pre-clinical research in view of prospective neuroprotection

ORCID Icon

References

  • Krafczyk N, Glomb MA. Characterization of phenolic compounds in rooibos tea. J Agric Food Chem. 2008;56:3368–76.
  • Joubert E, De Beer D. Rooibos (Aspalathus linearis) beyond the farm gate: from herbal tea to potential phytopharmaceutical. South Afr J Bot. 2011;77:869–86.
  • Johnson R, Beer D, Dludla PV, Ferreira D, Muller CJF, Joubert E. Aspalathin from rooibos (aspalathus linearis): a bioactive C-glucosyl dihydrochalcone with potential to target the metabolic syndrome. Planta Med. 2018;84:568–83.
  • Joubert E, de Beer D, Malherbe CJ, Muller N, Bonnet SL, van der Westhuizen JH, et al. Occurrence and sensory perception of Z-2-(β-d-glucopyranosyloxy)-3-phenylpropenoic acid in rooibos (Aspalathus linearis). Food Chem. 2013;136:1078–85.
  • Joubert E, De Beer D. Antioxidants of rooibos beverages: role of plant composition and processing. In: Preedy VR, editor. Processing and impact on antioxidants in beverages. London: Elsevier; 2014. p. 131–44. doi:10.1016/B978-0-12-404738-9.00014-3.
  • Stander M, Van Wyk B, Taylor MJC, Long HS. Analysis of phenolic compounds in rooibos tea (Aspalathus linearis) with a comparison of flavonoid-based compounds in natural populations of plants from different regions. J Agric Food Chem. 2017;65(47):10270–81. doi:10.1021/acs.jafc.7b03942.
  • Walters NA, De Villiers A, Joubert E, De Beer D. Improved HPLC method for rooibos phenolics targeting changes due to fermentation. J Food Comp Anal. 2017;55:20–9.
  • Olivier J, Symington EA, Jonker CZ, Rampedi IT, Van Eeden TS. Comparison of the mineral composition of leaves and infusions of traditional and herbal teas. S Afr J Sci. 2012;108:1–7.
  • Bramati L, Aquilano F, Pietta P. Unfermented rooibos tea: quantitative characterization of flavonoids by HPLC-UV and determination of the total antioxidant activity. J Agric Food Chem. 2003;51(25):7472–4. doi:10.1021/jf0347721.
  • Joubert E, Winterton P, Britz TJ, Gelderblom WCA. Antioxidant and pro-oxidant activities of aqueous extracts and crude polyphenolic fractions of rooibos (Aspalathus linearis). J Agric Food Chem 2005;53(26):10260–7.
  • Joubert E, Jolley B, Koch IS, Muller M, Van der Rijst M, de Beer D. Major production areas of rooibos (Aspalathus linearis) deliver herbal tea of similar phenolic and phenylpropenoic acid glucoside content. S Afr J Bot. 2016;103:162–9. doi:10.1016/j.sajb.2015.08.015.
  • Damiani E, Carloni P, Rocchetti G, Senizza B, Tiano L, Joubert E, et al. Impact of cold versus hot brewing on the phenolic profile and antioxidant capacity of rooibos (Aspalathus linearis) herbal Tea. Antioxidants (Basel). 2019;8(10):499. doi:10.3390/antiox8100499.
  • Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015;2015:1–18. doi:10.1155/2015/905215.
  • Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med. 2004;37(11):1683–93. doi:10.1016/j.freeradbiomed.2004.08.002.
  • Ude C, Schubert-Zsilavecz M, Wurglics M. Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet. 2013;52(9):727–49. doi:10.1007/s40262-013-0074-5.
  • Figueira I, Garcia G, Pimpão RC, Terrasso AP, Costa I, Almeida AF, et al. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep. 2017;7(1):11456.
  • Reddy VP, Aryal P, Robinson S, Rafiu R, Obrenovich M, Perry G. Polyphenols in Alzheimer's disease and in the gut-brain axis. Microorganisms. 2020;8(2):199. doi:10.3390/microorganisms8020199.
  • Kreuz S, Joubert E, Waldmann KH, Ternes W. Aspalathin, a flavonoid in Aspalathus linearis (rooibos), is absorbed by pig intestine as a C-glycoside. Nutr Res. 2008;28(10):690–701. doi:10.1016/j.nutres.2008.08.002.
  • Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. doi:10.3390/molecules24081583.
  • Li J, Li W, Jiang ZG, Ghanbari H. Oxidative stress and neurodegenerative disorders. Int J Mol Sci. 2013;14(12):24438–75.
  • Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24(4):325–40.
  • Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary polyphenols: a multifactorial strategy to target Alzheimer's disease. Int J Mol Sci. 2019;20(20):5090. doi:10.3390/ijms20205090.
  • Standley L, Winterton P, Marnewick JL, Gelderblom WC, Joubert E, Britz TJ. Influence of processing stages on antimutagenic and antioxidant potentials of rooibos tea. J Agric Food Chem. 2001;49(1):114–7. doi:10.1021/jf000802d.
  • Snijman PW, Joubert E, Ferreira D, Li XC, Ding Y, Green IR, et al. Antioxidant activity of the dihydrochalcones Aspalathin and Nothofagin and their corresponding flavones in relation to other Rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and trolox. J Agric Food Chem. 2009;57(15):6678–84. doi:10.1021/jf901417k.
  • Waisundara VY, Hoon LY. Free radical scavenging ability of Aspalathus linearis in two in vitro models of diabetes and cancer. J Tradit Complement Med. 2015;5:174–8. doi:10.1016/j.jtcme.2014.11.009.
  • Mentor S, Fisher D. Aggressive antioxidant reductive stress impairs brain endothelial cell angiogenesis and blood brain barrier function. Curr Neurovasc Res. 2017;14(1):71–81. doi:10.2174/1567202613666161129113950.
  • Fisher D, Thomas KA, Abdul-Rasool S. The synergistic and neuroprotective effects of alcohol-antioxidant treatment on blood-brain barrier endothelial cells. Alcohol Clin Exp Res. 2020;44(10):1997–2007. doi:10.1111/acer.14433.
  • Moens C, Bensellam M, Himpe E, Muller CJF, Jonas JC, Bouwens L. Aspalathin protects insulin-producing β cells against glucotoxicity and oxidative stress-induced cell death. Mol Nutr Food Res. 2020;64(8):e1901009. doi:10.1002/mnfr.201901009.
  • Lee W, Bae JS. Anti-inflammatory effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in vitro and in vivo. Inflammation. 2015;38:1502–16. doi:10.1007/s10753-015-0125-1.
  • Ajuwon OR, Oguntibeju OO, Marnewick JL. Amelioration of lipopolysaccharide-induced liver injury by aqueous rooibos (Aspalathus linearis) extract via inhibition of pro-inflammatory cytokines and oxidative stress. BMC Complement Altern Med. 2014;14:392. doi:10.1186/1472-6882-14-392.
  • Hong IS, Lee HY, Kim HP. Anti-oxidative effects of Rooibos tea (Aspalathus linearis) on immobilization-induced oxidative stress in rat brain. PLoS One. 2014;21(9):e87061. doi:10.1371/journal.pone.0087061.
  • Inanami O, Asanuma T, Inukai N, Jin T, Shimokawa S, Kasai N, et al. The suppression of age-related accumulation of lipid peroxides in rat brain by administration of rooibos tea (Aspalathus linearis). Neurosci. Lett. 1995;196:85–8.
  • Gamoudi BK. Evaluating the neuroprotective effects of fermented rooibos herbal tea in Wistar rats exposed to bisphenol-a during gestation and lactation [MSc Thesis]: University of Western Cape; 2019. https://core.ac.uk/reader/199461330, on-line access: 28.04.2021.
  • Akinrinmade O, Omoruyi S, Dietrich D, Ekpo O. Long-term consumption of fermented rooibos herbal tea offers neuroprotection against ischemic brain injury in rats. Acta Neurobiol. Exp. 2017;77:94–105.
  • Smit-Van Schalkwyk M, Windvogel S, Strijdom H. Rooibos (Aspalathus linearis) protects against nicotineinduced vascular injury and oxidative stress in Wistar rats. Cardiovasc J Afr. 2020;31(4):81–90. doi:10.5830/CVJA-2019-052.
  • Uličná O, Vančová O, Kucharská J, Janega P, Waczulíková I. Rooibos tea (Aspalathus linearis) ameliorates the CCl4-induced injury to mitochondrial respiratory function and energy production in rat liver. Gen Physiol Biophys. 2019;38(1):15–25. doi:10.4149/gpb_2018037.
  • Uličná O, Greksák M, Vancová O, Zlatos L, Galbavý S, Bozek P, et al. Hepatoprotective effect of rooibos tea (Aspalathus linearis) on CCl4-induced liver damage in rats. Physiol Res. 2003;52(4):461–6.
  • Uličná O, Vancová O, Waczulíková I, Bozek P, Janega P, Babál P, et al. Does rooibos tea (Aspalathus linearis) support regeneration of rat liver after intoxication by carbon tetrachloride? Gen Physiol Biophys. 2008;27(3):179–86.
  • Baba H, Ohtsuka Y, Haruna H, Lee T, Nagata S, Maeda M, et al. Studies of anti-inflammatory effects of Rooibos tea in rats. Pediatr Int. 2009;51(5):700–4. doi:10.1111/j.1442-200X.2009.02835.x.
  • Piancone F, La Rosa F, Marventano I, Saresella M, Clerici M. The role of the inflammasome in neurodegenerative diseases. Molecules. 2021;26(4):953. doi:10.3390/molecules26040953.
  • Nichols MR, St-Pierre MK, Wendeln AC, Makoni NJ, Gouwens LK, Garrad EC, et al. Inflammatory mechanisms in neurodegeneration. J Neurochem. 2019;149(5):562–81. doi:10.1111/jnc.14674.
  • Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–83. doi:10.1126/science.aag2590.
  • Niranjan R. Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochem Int. 2018;120:13–20. doi:10.1016/j.neuint.2018.07.003.
  • Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (review). Mol Med Rep. 2016;13(4):3391–6. doi:10.3892/mmr.2016.4948.
  • Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1037–45. doi:10.1016/j.bbadis.2016.04.017.
  • Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1618. doi:10.3390/nu10111618.
  • Magcwebeba T, Swart P, Swanevelder S, Joubert E, Gelderblom W. Anti-inflammatory effects of Aspalathus linearis and cyclopia spp. extracts in a UVB/keratinocyte (HaCaT) model utilising interleukin-1α accumulation as biomarker. Molecules. 2016;21(10):1323. doi:10.3390/molecules21101323.
  • Samodien S, Kock M, Joubert E, Swanevelder S, Gelderblom WCA. Differential cytotoxicity of rooibos and green tea extracts against primary rat hepatocytes and human liver and colon cancer cells – causal role of major flavonoids. Nutr Cancer. 2020: 1–15. doi:10.1080/01635581.2020.1820054.
  • Kunishiro K, Tai A, Yamamoto I. Effects of rooibos tea extract on antigen-specific antibody production and cytokine generation in vitro and in vivo. Biosci Biotechnol Biochem. 2001;65(10):2137–45. doi:10.1271/bbb.65.2137.
  • Hendricks R, Pool EJ. The in vitro effects of rooibos and black tea on immune pathways. J Immunoassay Immunochem. 2010;31(2):169–80. doi:10.1080/15321811003617537.
  • Lawal AO, Oluyede DM, Adebimpe MO, Olumegbon LT, Awolaja OO, Elekofehinti OO, et al. The cardiovascular protective effects of rooibos (Aspalathus linearis) extract on diesel exhaust particles induced inflammation and oxidative stress involve NF-κB- and Nrf2-dependent pathways modulation. Heliyon. 2019;5(3):e01426. doi:10.1016/j.heliyon.2019.e01426.
  • Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65:1049–61.
  • Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon SH, Yang SJ. Diabetes and Alzheimer's disease: mechanisms and nutritional aspects. Clin Nutr Res. 2018;7(4):229–40. doi:10.7762/cnr.2018.7.4.229.
  • Muller CJF, Joubert E, De Beer D, Sanderson M, Malherbe CJ, Fey SJ, et al. Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine. 2012;20:32–9.
  • Kamakura R, Son MJ, de Beer D, Joubert E, Miura Y, Yagasaki K. Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-A(y) mice. Cytotechnology. 2015;67(4):699–710. doi:10.1007/s10616-014-9816-y.
  • Kawano A, Nakamura H, Hata S, Minakawa M, Miura Y, Yagasaki K. Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine. 2009;16:437–43.
  • Son MJ, Minakawa M, Miura Y, Yagasaki K. Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice. Eur J Nutr. 2013;52:1607–19.
  • Smit S, Johnson R, Van Vuuren M, Huisamen B. Myocardial glucose clearance by aspalathin treatment in young, mature, and obese insulin-resistant rats. Planta Med. 2018;84:75–83.
  • Ku SK, Kwak S, Kim Y, Bae JS. Aspalathin and nothofagin from rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo. Inflammation. 2015;38(1):445–55. doi:10.1007/s10753-014-0049-1.
  • Johnson R, Dludla P, Joubert E, February F, Mazibuko S, Ghoor S, et al. Aspalathin, a dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against high glucose induced shifts in substrate preference and apoptosis. Mol Nutr Food Res. 2016;60:922–34.
  • Johnson R, Shabalala S, Louw J, Kappo A, Muller C. Aspalathin reverts doxorubicin-induced cardiotoxicity through increased autophagy and decreased expression of p53/mTOR/p62 signaling. Molecules. 2017;22:E1589. doi:10.3390/molecules22101589.
  • Johnson R, Dludla P, Muller C, Huisamen B, Essop M, Louw J. The transcription profile unveils the cardioprotective effect of aspalathin against lipid toxicity in an in vitro H9c2 model. Molecules. 2017;22:E219.
  • Dludla PV, Muller CJ, Joubert E, Louw J, Gabuza KB, Huisamen B, et al. Phenylpyruvic acid-2-O-β-D-glucoside attenuates high glucose-induced apoptosis in H9c2 cardiomyocytes. Planta Med. 2016;82(17):1468–74. doi:10.1055/s-0042-110856.
  • Dludla PV, Muller C, Louw J, Mazibuko-Mbeje S E, Tiano L, Silvestri S, et al. The combination effect of aspalathin and phenylpyruvic acid-2-O-β-D-glucoside from rooibos against hyperglycemia-induced cardiac damage: an in vitro study. Nutrients. 2020;12(4):1151. doi:10.3390/nu12041151.
  • Chen W, Sudji IR, Wang E, Joubert E, van Wyk BE, Wink M. Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine. 2013;20(3-4):380–6. doi:10.1016/j.phymed.2012.10.006.
  • Obasa Z, van Vuuren MA, Huisamen B, Windvogel SL. The modulating effects of green rooibos (Aspalathus linearis) extract on vascular function and antioxidant status in obese Wistar rats. Cardiovasc J Afr. 2021;32:1–11. doi:10.5830/CVJA-2020-048.
  • Pyrzanowska J, Fecka I, Mirowska-Guzel D, Joniec-Maciejak I, Blecharz-Klin K, Piechal A, et al. Long-term administration of Aspalathus linearis infusion affects spatial memory of adult sprague-dawley male rats as well as increases their striatal dopamine content. J Ethnopharmacol. 2019;238:111881. doi:10.1016/j.jep.2019.111881.
  • Mikami N, Tsujimura J, Sato A, Narasada A, Shigeta M, Kato M, et al. Green rooibos extract from Aspalathus linearis, and its component, aspalathin, suppress elevation of blood glucose levels in mice and inhibit α-amylase and α-glucosidase activities in vitro. Food Sci Technol Res. 2015;21:231–40.
  • Sasaki M, Nishida N, Shimada M. A beneficial role of rooibos in diabetes mellitus: a systematic review and meta-analysis. Molecules. 2018;23(4):839. doi:10.3390/molecules23040839.
  • Sanderson M, Mazibuko SE, Joubert E, de Beer D, Johnson R, Pheiffer C, et al. Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine. 2014;21(2):109–17.
  • Mazibuko SE, Muller CJ, Joubert E, de Beer D, Johnson R, Opoku AR, et al. Amelioration of palmitate-induced insulin resistance in C2C12 muscle cells by rooibos (Aspalathus linearis). Phytomedicine. 2013;20(10):813–19. doi:10.1016/j.phymed.2013.03.018.
  • Mazibuko SE, Joubert E, Johnson R, Louw J, Opoku AR, Muller CJF. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol Nutr Food Res. 2015;59:2199–208.
  • Mazibuko-Mbeje SE, Dludla PV, Roux C, Johnson R, Ghoor S, Joubert E, et al. Aspalathin-enriched green rooibos extract reduces hepatic insulin resistance by modulating PI3 K/AKT and AMPK pathways. Int J Mol Sci. 2019;20(3):633. doi:10.3390/ijms20030633.
  • Millar DA, Bowles S, Windvogel SL, Louw J, Muller CJF. Effect of rooibos (Aspalathus linearis) extract on atorvastatin-induced toxicity in C3A liver cells. J Cell Physiol. 2020;235:9487–96. doi:10.1002/jcp.29756.
  • van der Merwe JD, de Beer D, Joubert E, Gelderblom WC. Short-term and sub-chronic dietary exposure to aspalathin-enriched green rooibos (Aspalathus linearis) extract affects rat liver function and antioxidant status [published correction appears in molecules. 2016; 21(7). pii: E907. https://doi.org/10.3390/molecules21070907. Molecules. 2015;20(12):22674–90. doi:10.3390/molecules201219868.
  • Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int. 2004;45(5):583–95. doi:10.1016/j.neuint.2004.03.007.
  • Hampel H, Mesulam MM, Cuello AC, Khachaturian AS, Vergallo A, Farlow MR, et al. Revisiting the cholinergic hypothesis in Alzheimer's disease: emerging evidence from translational and clinical research. J Prev Alzheimers Dis. 2019;6(1):2–15. doi:10.14283/jpad.2018.43.
  • Fahn S, Sulzer D. Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx. 2004;1(1):139–54. doi:10.1602/neurorx.1.1.139.
  • Pyrzanowska J, Joniec-Maciejak I, Blecharz-Klin K, Piechal A, Mirowska-Guzel D, Fecka I, et al. Aspalathus linearis infusion affects hole-board test behaviour and amino acid concentration in the brain. Neurosci Lett. 2021;747:135680. doi:10.1016/j.neulet.2021.135680.
  • Jung JH, Kim SJ. Anxiolytic action of taurine via intranasal administration in mice. Biomol Ther (Seoul). 2019;27(5):450–56. doi:10.4062/biomolther.2018.218.
  • Pezze M, McGarrity S, Mason R, Fone KC, Bast T. Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J Neurosci. 2014;34(23):7931–46. doi:10.1523/JNEUROSCI.3450-13.2014.
  • Jamwal S, Kumar P. Insight into the emerging role of striatal neurotransmitters in the pathophysiology of Parkinson's disease and Huntington's disease: a review. Curr Neuropharmacol. 2019;17(2):165–75. doi:10.2174/1570159X16666180302115032.
  • Ochoa de la Paz L, Zenteno E, Gulias-Canizo R, Quiroz-Mercado H. Taurine and GABA neurotransmitter receptors, a relationship with therapeutic potential? expert Rev. Neurotherapeutics. 2019;19(4):289–91. doi:10.1080/14737175.2019.1593827.
  • Kumari N, Prentice H, Wu JY. Taurine and its neuroprotective role. Adv Exp Med Biol. 2013;775:19–27. doi:10.1007/978-1-4614-6130-2_2.
  • Jakaria M, Azam S, Haque ME, Jo SH, Uddin MS, Kim IS, Choi DK. Taurine and its analogs in neurological disorders: focus on therapeutic potential and molecular mechanisms. Redox Biol. 2019;24:101223. doi:10.1016/j.redox.2019.101223.
  • Mabuza N, Kinfe HH, Godeto TW, Ambushe AA. Estimated contributions of rooibos tea to the daily manganese and zinc intakes determined in tea leaves and Tea infusions by inductively coupled plasma-mass spectrometry. Biol Trace Elem Res. 2021;199(3):1145–52. doi:10.1007/s12011-020-02211-x.
  • Rychlik M, Mlyniec K. Zinc-mediated neurotransmission in Alzheimer's disease: A potential role of the GPR39 in dementia. Curr Neuropharmacol. 2020;18(1):2–13. doi:10.2174/1570159X17666190704153807.
  • Piechal A, Blecharz-Klin K, Pyrzanowska J, Widy-Tyszkiewicz E. Influence of long-term Zinc administration on spatial learning and exploratory activity in rats. Biol Trace Elem Res. 2016;172(2):408–18. doi:10.1007/s12011-015-0597-8.
  • Blecharz-Klin K, Piechal A, Joniec-Maciejak I, Pyrzanowska J, Widy-Tyszkiewicz E. Effect of intranasal manganese administration on neurotransmission and spatial learning in rats. Toxicol Appl Pharmacol. 2012;265(1):1–9. doi:10.1016/j.taap.2012.09.015.
  • Balachandran RC, Mukhopadhyay S, McBride D, Veevers J, Harrison FE, Aschner M, et al. Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem. 2020;295(19):6312–29. doi:10.1074/jbc.REV119.009453.
  • Areo OM, Njobeh PB. Risk assessment of heavy metals in rooibos (Aspalathus linearis) tea consumed in South Africa. Environ Sci Pollut Res Int. 2021. doi:10.1007/s11356-021-14968-2.
  • Sinisalo M, Enkovaara AL, Kivistö KT. Possible hepatotoxic effect of rooibos tea: a case report. Eur J Clin Pharmacol. 2010;66(4):427–8. doi:10.1007/s00228-009-0776-7.
  • Engels M, Wang C, Matoso A, Maidan E, Wands J. Tea not tincture: hepatotoxicity associated with rooibos herbal Tea. ACG Case Rep J. 2013;1(1):58–60. doi:10.14309/crj.2013.20.
  • Carrier P, Debette-Gratien M, Jacques J, Grau M, Loustaud-Ratti V. Rooibos, a fake friend. Clin Res Hepatol Gastroenterol. 2021;45(2):101499. doi:10.1016/j.clinre.2020.06.020.
  • Fantoukh OI, Dale OR, Parveen A, Hawwal MF, Ali Z, Manda VK, et al. Safety assessment of phytochemicals derived from the globalized South African rooibos Tea (Aspalathus linearis) through interaction with CYP, PXR, and P-gp. J Agric Food Chem. 2019;67(17):4967–75. doi:10.1021/acs.jafc.9b00846.
  • Pyrzanowska J. The toxic contaminants of Aspalathus linearis plant material as well as herb-drug interactions may constitute the health risk factors in daily rooibos tea consumers. Int J Environ Health Res. 2021;25:1–14. doi:10.1080/09603123.2021.2009780.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.