Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 7
235
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Brain polar phenol content, behavioural and neurochemical effects of Corinthian currant in a rotenone rat model of Parkinson’s disease

, , , , , & ORCID Icon show all

References

  • Cardoso S, Moreira P, Agostinho P, Pereira C, Oliveira C. Neurodegenerative pathways in Parkinsons disease: therapeutic strategies. Curr Drug Target CNS Neurol Disord. 2005;4:405–19. DOI:10.2174/1568007054546072.
  • Hegarty SV, Lee DJ, O’Keeffe GW, Sullivan AM. Effects of intracerebral neurotrophic factor application on motor symptoms in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2017;38. DOI:10.1016/j.parkreldis.2017.02.011.
  • Sherer TB, Betarbet R, Testa CM, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23:10756–64. DOI:10.1523/JNEUROSCI.23-34-10756.2003.
  • Xiong N, Long X, Xiong J, et al. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol. 2012;42:613–32. DOI:10.3109/10408444.2012.680431.
  • Han Y, Wang T, Li C, et al. Ginsenoside Rg3 exerts a neuroprotective effect in rotenone-induced Parkinson’s disease mice via its anti-oxidative properties. Eur J Pharmacol. 2021;909:174413. DOI:10.1016/j.ejphar.2021.174413.
  • Nabavi SF, Sureda A, Dehpour AR, et al. Regulation of autophagy by polyphenols: paving the road for treatment of neurodegeneration. Biotechnol Adv. 2018;36:1768–78. DOI:10.1016/j.biotechadv.2017.12.001.
  • Kung H-C, Lin K-J, Kung C-T, Lin T-K. Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines. 2021;9:918. DOI:10.3390/biomedicines9080918.
  • Lacerda DC, Urquiza-Martínez MV, Manhaes-de-Castro R, et al. Metabolic and neurological consequences of the treatment with polyphenols: a systematic review in rodent models of noncommunicable diseases. Nutr Neurosci. 2021: 1–17. DOI:10.1080/1028415X.2021.1891614.
  • Karuppagounder SS, Madathil SK, Pandey M, Haobam R, Rajamma U, Mohanakumar KP. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience. 2013;236: 136–48. DOI:10.1016/j.neuroscience.2013.01.032.
  • Vinson JA, Su X, Zubik L, Bose P. Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem. 2001;49. DOI:10.1021/jf0009293.
  • Kallithraka S, Mohdaly AA-A, Makris DP, Kefalas P. Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera sp.): association with antiradical activity. J Food Compos Anal. 2005;18:375–86. DOI:10.1016/j.jfca.2004.02.010.
  • Chiou A, Karathanos VT, Mylona A, Salta FN, Preventi F, Andrikopoulos NK. Currants (Vitis vinifera L.) content of simple phenolics and antioxidant activity. Food Chem. 2007;102:516–22. DOI:10.1016/J.FOODCHEM.2006.06.009.
  • Erlund I, Marniemi J, Hakala P, Alfthan G, Meririnne E, Aro A. Consumption of black currants, lingonberries and bilberries increases serum quercetin concentrations. Eur J Clin Nutr. 2003;57:37–42. DOI:10.1038/sj.ejcn.1601513.
  • Sarbishegi M, Charkhat Gorgich EA, Khajavi O, Komeili G, Salimi S. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson’s disease in rat. Metab Brain Dis. 2018;33:79–88. DOI:10.1007/s11011-017-0131-0.
  • Lever C, Burton S, Ο’Keefe J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci. 2006;17. DOI:10.1515/REVNEURO.2006.17.1-2.111.
  • Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis. 2009;34:279–90. DOI:10.1016/j.nbd.2009.01.016.
  • Crusio WE. Genetic dissection of mouse exploratory behaviour. Behav Brain Res. 2001;125:127–32. DOI:10.1016/S0166-4328(01)00280-7.
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2007.
  • Mountaki C, Dafnis I, Panagopoulou EA, et al. Mechanistic insight into the capacity of natural polar phenolic compounds to abolish Alzheimer’s disease-associated pathogenic effects of apoE4 forms. Free Radical Biol Med. 2021;171:284–301. DOI:10.1016/j.freeradbiomed.2021.05.022.
  • Perdikaris P, Tsarouchi M, Fanarioti E, Natsaridis E, Mitsacos A, Giompres P. Long lasting effects of chronic WIN55,212-2 treatment on mesostriatal dopaminergic and cannabinoid systems in the rat brain. Neuropharmacology. 2018;129:1–15. DOI:10.1016/j.neuropharm.2017.11.005.
  • Aryal S, Skinner T, Bridges B, Weber JT. The pathology of Parkinson’s disease and potential benefit of dietary polyphenols. Molecules. 2020;25:4382. DOI:10.3390/molecules25194382.
  • le Nedelec M, Glue P, Winter H, Goulton C, Broughton L, Medlicott N. Acute low-dose ketamine produces a rapid and robust increase in plasma BDNF without altering brain BDNF concentrations. Drug Deliv Transl Res. 2018;8:780–6. DOI:10.1007/s13346-017-0476-2.
  • Ko MJ, Mulia GE, van Rijn RM. Commonly used anesthesia/euthanasia methods for brain collection differentially impact MAPK activity in male and female C57BL/6 mice. Front Cell Neurosci. 2019;13. DOI:10.3389/fncel.2019.00096.
  • Kohtala S, Theilmann W, Rosenholm M, et al. Ketamine-induced regulation of TrkB-GSK3β signaling is accompanied by slow EEG oscillations and sedation but is independent of hydroxynorketamine metabolites. Neuropharmacology. 2019;157:107684. DOI:10.1016/j.neuropharm.2019.107684.
  • Balakrishnan R, Vijayraja D, Mohankumar T, et al. Isolongifolene mitigates rotenone-induced dopamine depletion and motor deficits through anti-oxidative and anti-apoptotic effects in a rat model of Parkinson’s disease. J Chem Neuroanat. 2021;112:101890. DOI:10.1016/j.jchemneu.2020.101890.
  • Ben Youssef S, Brisson G, Doucet-Beaupré H, et al. Neuroprotective benefits of grape seed and skin extract in a mouse model of Parkinson’s disease. Nutr Neurosci. 2021;24:197–211. DOI:10.1080/1028415X.2019.1616435.
  • Wrangel CV, Schwabe K, John N, Krauss JK, Alam M. The rotenone-induced rat model of Parkinson’s disease: behavioral and electrophysiological findings. Behav Brain Res. 2015;279:52–61. DOI:10.1016/J.BBR.2014.11.002.
  • Sarkar S, Gough B, Raymick J, et al. Histopathological and electrophysiological indices of rotenone-evoked dopaminergic toxicity: neuroprotective effects of acetyl-l-carnitine. Neurosci Lett. 2015;606:53–9. DOI:10.1016/j.neulet.2015.08.044.
  • Ferris CF, Marella M, Smerkers B, et al. A phenotypic model recapitulating the neuropathology of Parkinson’s disease. Brain Behav. 2013;3:351–66. DOI:10.1002/brb3.138.
  • Jin F, Wu Q, Lu Y-F, Gong Q-H, Shi J-S. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol. 2008;600. DOI:10.1016/j.ejphar.2008.10.005.
  • Haleagrahara N, Siew CJ, Mitra NK, Kumari M. Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum. Neurosci Lett. 2011;500:139–43. DOI:10.1016/j.neulet.2011.06.021.
  • Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R, Sathaye S. Neuroprotective and neurotrophic effects of apigenin and luteolin in MPTP induced parkinsonism in mice. Neuropharmacology. 2014;86:192–202. DOI:10.1016/j.neuropharm.2014.07.012.
  • Ay M, Luo J, Langley M, et al. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s disease. J Neurochem. 2017;141. DOI:10.1111/jnc.14033.
  • Ishisaka A, Ichikawa S, Sakakibara H, et al. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biol Med. 2011;51:1329–36. DOI:10.1016/j.freeradbiomed.2011.06.017.
  • Ahmad N, Ahmad R, Abbas Naqvi A, et al. Quantification of rutin in rat’s brain by UHPLC/ESI-Q-TOF-MS/MS after intanasal administration of rutin loaded chitosan nanoparticles. EXCLI J. 2016;15:518–31. DOI:10.17179/excli2016-361.
  • Hor SL, Teoh SL, Lim WL. Plant polyphenols as neuroprotective agents in Parkinson’s disease targeting oxidative stress. Curr Drug Targets. 2020;21. DOI:10.2174/1389450120666191017120505.
  • Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–8006. DOI:10.1039/C4RA13315C.
  • di Meo F, Lemaur V, Cornil J, et al. Free radical scavenging by natural polyphenols: atom versus electron transfer. J Phys Chem A. 2013;117:2082–92. DOI:10.1021/jp3116319.
  • Banji D, Banji OJF, Srinivas K. Neuroprotective effect of turmeric extract in combination with its essential oil and enhanced brain bioavailability in an animal model. BioMed Res Int. 2021;2021:1–12. DOI:10.1155/2021/6645720.
  • Patsoukis N, Papapostolou I, Zervoudakis G, Georgiou CD, Matsokis NA, Panagopoulos NT. Thiol redox state and oxidative stress in midbrain and striatum of weaver mutant mice, a genetic model of nigrostriatal dopamine deficiency. Neurosci Lett. 2005;376:24–8. DOI:10.1016/j.neulet.2004.11.019.
  • Cardoso HD, Passos PP, Lagranha CJ, et al. Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids. Front Hum Neurosci. 2012;6. DOI:10.3389/fnhum.2012.00249.
  • Zhao X, Wang J, Hu S, Wang R, Mao Y, Xie J. Neuroprotective effect of resveratrol on rotenone-treated C57BL/6 mice. NeuroReport. 2017;28. DOI:10.1097/WNR.0000000000000789.
  • Kujawska M, Jodynis-Liebert J. Polyphenols in Parkinson’s disease: A systematic review of in vivo studies. Nutrients. 2018;10. DOI:10.3390/nu10050642.
  • Jenner P, Warren Olanow C. Understanding cell death in Parkinson’s disease. Ann Neurol. 1998;44:S72–S84. DOI:10.1002/ana.410440712.
  • Fumagalli F, Racagni G, Riva MA. Shedding light into the role of BDNF in the pharmacotherapy of Parkinson’s disease. Pharmacogenomics J. 2006;6. DOI:10.1038/sj.tpj.6500360.
  • Hyman C, Hofer M, Barde Y-A, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350:230–2. DOI:10.1038/350230a0.
  • Johnson ME, Zhou X-F, Bobrovskaya L. The effects of rotenone on TH, BDNF and BDNF-related proteins in the brain and periphery: relevance to early Parkinson’s disease. J Chem Neuroanat. 2019;97:23–32. DOI:10.1016/j.jchemneu.2019.01.010.
  • Parain K, Murer MG, Yan Q, et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. NeuroReport. 1999;10:557–61. DOI:10.1097/00001756-199902250-00021.
  • Weissmiller AM, Wu C. Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener. 2012;1. DOI:10.1186/2047-9158-1-14.
  • Gravesteijn E, Mensink RP, Plat J. Effects of nutritional interventions on BDNF concentrations in humans: a systematic review. Nutr Neurosci. 2021. DOI:10.1080/1028415X.2020.1865758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.