Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 8
1,009
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Dietary n-3 polyunsaturated fatty acid deficiency alters olfactory mucosa sensitivity in young mice but has no impact on olfactory behavior

, , , , , , & ORCID Icon show all

References

  • Stevenson RJ. An initial evaluation of the functions of human olfaction. Chem Senses. 2010;35:3–20.
  • Boesveldt S, Parma V. The importance of the olfactory system in human well-being, through nutrition and social behavior. Cell Tissue Res. 2021;383:559–67.
  • Schwob JE, Jang W, Holbrook EH, Lin B, Herrick DB, Peterson JN, et al. Stem and progenitor cells of the mammalian olfactory epithelium: taking poietic license. J Comp Neurol. 2017;525:1034–54.
  • Firestein S. How the olfactory system makes sense of scents. Nature. 2001;413:211–8.
  • Kleene SJ. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses. 2008;33:839–59.
  • Palouzier-Paulignan B, Lacroix M-C, Aimé P, Baly C, Caillol M, Congar P, et al. Olfaction under metabolic influences. Chem Senses. 2012;37:769–97.
  • Thiebaud N, Johnson MC, Butler JL, Bell GA, Ferguson KL, Fadool AR, et al. Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning. J Neurosci. 2014;34:6970–84.
  • Merle L, Person O, Bonnet P, Grégoire S, Soubeyre V, Grosmaitre X, et al. Maternal high fat high sugar diet disrupts olfactory behavior but not mucosa sensitivity in the offspring. Psychoneuroendocrinology. 2019;104:249–58.
  • Lacroix M-C, Caillol M, Durieux D, Monnerie R, Grebert D, Pellerin L, et al. Long-lasting metabolic imbalance related to obesity alters olfactory tissue homeostasis and impairs olfactory-driven behaviors. Chem Senses. 2015;40:537–56.
  • Le Bon AM, Deprêtre N, Sibille E, Cabaret S, Grégoire S, Soubeyre V, et al. Comprehensive study of rodent olfactory tissue lipid composition. Prostaglandins Leukot Essent Fatty Acids. 2018;131:32–43.
  • Hichami A, Datiche F, Ullah S, Liénard F, Chardigny J-M, Cattarelli M, et al. Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats. Behav Brain Res. 2007;184:1–10.
  • Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15:771–85.
  • Anses. Apports en acides gras de la population vivant en France et comparaison aux apports nutritionnels conseillés définis en 2010. 2015. Available from: https://www.anses.fr/fr/content/les-lipides.
  • Brenna JT. Animal studies of the functional consequences of suboptimal polyunsaturated fatty acid status during pregnancy, lactation and early post-natal life. Matern Child Nutr. 2011;7(Suppl 2):59–79.
  • de Velasco PC, Mendonça HR, Borba JMC, Andrade da Costa BLDS, Guedes RCA, Navarro DMDAF, et al. Nutritional restriction of omega-3 fatty acids alters topographical fine tuning and leads to a delay in the critical period in the rodent visual system. Exp Neurol. 2012;234:220–9.
  • Greiner RS, Moriguchi T, Slotnick BM, Hutton A, Salem N. Olfactory discrimination deficits in n-3 fatty acid-deficient rats. Physiol Behav. 2001;72:379–85.
  • Khoury S, Soubeyre V, Cabaret S, Merle L, Grégoire S, Deprêtre N, et al. Perinatal exposure to diets with different n-6:n-3 fatty acid ratios affects olfactory tissue fatty acid composition. Sci Rep. 2020;10:10785.
  • Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.
  • Kuhlmann K, Tschapek A, Wiese H, Eisenacher M, Meyer HE, Hatt HH, et al. The membrane proteome of sensory cilia to the depth of olfactory receptors. Mol Cell Proteomics. 2014;13:1828–43.
  • Kurtenbach S, Gießl A, Strömberg S, Kremers J, Atorf J, Rasche S, et al. The BEACH protein LRBA promotes the localization of the heterotrimeric G-protein golf to olfactory cilia. Sci Rep. 2017;7:8409.
  • Debbabi M, Zarrouk A, Bezine M, Meddeb W, Nury T, Badreddine A, et al. Comparison of the effects of major fatty acids present in the Mediterranean diet (oleic acid, docosahexaenoic acid) and in hydrogenated oils (elaidic acid) on 7-ketocholesterol-induced oxiapoptophagy in microglial BV-2 cells. Chem Phys Lipids. 2017;207:151–70.
  • Lacroix M-C, Badonnel K, Meunier N, Tan F, Poupon CS-L, Durieux D, et al. Expression of insulin system in the olfactory epithelium: first approaches to its role and regulation. J Neuroendocrinol. 2008;20:1176–90.
  • Guilloux J-P, Seney M, Edgar N, Sibille E. Integrated behavioral z-scoring increases the sensitivity and reliability of behavioral phenotyping in mice: relevance to emotionality and sex. J Neurosci Methods. 2011;197:21–31.
  • Yang M, Crawley JN. Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci. 2009;Chapter 8:Unit 8.24.
  • Mandairon N, Sultan S, Rey N, Kermen F, Moreno M, Busto G, et al. A computer-assisted odorized hole-board for testing olfactory perception in mice. J Neurosci Methods. 2009;180:296–303.
  • Pélerin H, Jouin M, Lallemand M-S, Alessandri J-M, Cunnane SC, Langelier B, et al. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status. Prostaglandins Leukot Essent Fatty Acids. 2014;91:213–20.
  • Joffre C, Grégoire S, De Smedt V, Acar N, Bretillon L, Nadjar A, et al. Modulation of brain PUFA content in different experimental models of mice. Prostaglandins Leukot Essent Fatty Acids. 2016;114:1–10.
  • Lacombe RJS, Chouinard-Watkins R, Bazinet RP. Brain docosahexaenoic acid uptake and metabolism. Mol Aspects Med. 2018;64:109–34.
  • Schnebelen C, Viau S, Grégoire S, Joffre C, Creuzot-Garcher CP, Bron AM, et al. Nutrition for the eye: different susceptibility of the retina and the lacrimal gland to dietary omega-6 and omega-3 polyunsaturated fatty acid incorporation. Ophthalmic Res. 2009;41:216–24.
  • Schnebelen C, Grégoire S, Pasquis B, Joffre C, Creuzot-Garcher CP, Bron AM, et al. Dietary n-3 and n-6 PUFA enhance DHA incorporation in retinal phospholipids without affecting PGE(1) and PGE (2) levels. Lipids. 2009;44:465–70.
  • Takeuchi H, Kurahashi T. Second messenger molecules have a limited spread in olfactory cilia. J Gen Physiol. 2018;150:1647–59.
  • Meyer SA, Ozbay BN, Potcoava M, Salcedo E, Restrepo D, Gibson EA. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope. J Biomed Opt. 2016;21:66017.
  • Castillo K, Restrepo D, Bacigalupo J. Cellular and molecular Ca2+ microdomains in olfactory cilia support low signaling amplification of odor transduction. Eur J Neurosci. 2010;32:932–8.
  • Schreiber S, Fleischer J, Breer H, Boekhoff I. A possible role for caveolin as a signaling organizer in olfactory sensory membranes. J Biol Chem. 2000;275:24115–23.
  • Brady JD, Rich TC, Le X, Stafford K, Fowler CJ, Lynch L, et al. Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Mol Pharmacol. 2004;65:503–11.
  • Lobasso S, Lopalco P, Angelini R, Baronio M, Fanizzi FP, Babudri F, et al. Lipidomic analysis of porcine olfactory epithelial membranes and cilia. Lipids. 2010;45:593–602.
  • Kaiser F, Huebecker M, Wachten D. Sphingolipids controlling ciliary and microvillar function. FEBS Lett. 2020;594:3652–67.
  • Shaikh SR, Kinnun JJ, Leng X, Williams JA, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim Biophys Acta. 2015;1848:211–9.
  • Bennett WFD, Shea J-E, Tieleman DP. Phospholipid chain interactions with cholesterol drive domain formation in lipid membranes. Biophys J. 2018;114:2595–605.
  • Wang C, Yu Y, Regen SL. Lipid raft formation: key role of polyunsaturated phospholipids. Angew Chem Int Ed Engl. 2017;56:1639–42.
  • Wassall SR, Stillwell W. Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes. Biochim Biophys Acta. 2009;1788:24–32.
  • Glezer I, Malnic B. Olfactory receptor function. Handb Clin Neurol. 2019;164:67–78.
  • Roskams AJ, Cai X, Ronnett GV. Expression of neuron-specific beta-III tubulin during olfactory neurogenesis in the embryonic and adult rat. Neuroscience. 1998;83:191–200.
  • Dibattista M, Al Koborssy D, Genovese F, Reisert J. The functional relevance of olfactory marker protein in the vertebrate olfactory system: a never-ending story. Cell Tissue Res. 2021;383:409–27.
  • Reisert J, Yau K-W, Margolis FL. Olfactory marker protein modulates the cAMP kinetics of the odour-induced response in cilia of mouse olfactory receptor neurons. J Physiol. 2007;585:731–40.
  • Lee AC, He J, Ma M. Olfactory marker protein is critical for functional maturation of olfactory sensory neurons and development of mother preference. J Neurosci. 2011;31:2974–82.
  • Dibattista M, Reisert J. The odorant receptor-dependent role of olfactory marker protein in olfactory receptor neurons. J Neurosci. 2016;36:2995–3006.
  • Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H. RTP family members induce functional expression of mammalian odorant receptors. Cell. 2004;119:679–91.
  • Sharma R, Ishimaru Y, Davison I, Ikegami K, Chien M-S, You H, et al. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice. eLife. 2017;6:e21895.
  • Cygnar KD, Zhao H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat Neurosci. 2009;12:454–62.
  • Youngentob SL, Schwob JE. Odorant identification and quality perception following methyl bromide-induced lesions of the olfactory epithelium. Behav Neurosci. 2006;120:1346–55.
  • Julliard A-K, Al Koborssy D, Fadool DA, Palouzier-Paulignan B. Nutrient sensing: another chemosensitivity of the olfactory system. Front Physiol. 2017;8:468.
  • Joffre C, Dinel A-L, Chataigner M, Pallet V. Layé s. n-3 polyunsaturated fatty acids and their derivates reduce neuroinflammation during aging. Nutrients. 2020;12:647.
  • Calder PC. n-3 PUFA and inflammation: from membrane to nucleus and from bench to bedside. Proc Nutr Soc. 2020;79: 1–13.
  • Islam Z, Harkema JR, Pestka JJ. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ Health Perspect. 2006;114:1099–107.
  • Imamura F, Hasegawa-Ishii S. Environmental toxicants-induced immune responses in the olfactory mucosa. Front Immunol. 2016;7:475.
  • Youngentob SL, Schwob JE, Sheehe PR, Youngentob LM. Odorant threshold following methyl bromide-induced lesions of the olfactory epithelium. Physiol Behav. 1997;62:1241–52.
  • Cheung MC, Jang W, Schwob JE, Wachowiak M. Functional recovery of odor representations in regenerated sensory inputs to the olfactory bulb. Front Neural Circuits. 2013;7:207.