Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 26, 2023 - Issue 12
457
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Total alkaloids from the seed embryo of Nelumbo nucifera Gaertn. improve cognitive impairment in APP/PS1 mice and protect Aβ-damaged PC12 cells

ORCID Icon, , , , , & show all

References

  • Avila J, Perry G. A multilevel view of the development of Alzheimer's disease. Neuroscience. 2021;457:283–93. https://doi.org/10.1016/j.neuroscience.2020.11.015.
  • Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci. 2015;18(6):800–6. https://doi.org/10.1038/nn.4018.
  • Lue LF, Beach TG, Walker DG. Alzheimer's disease research using human microglia. Cells. 2019;8(8):838. https://doi.org/10.3390/cells8080838.
  • Chang CW, Shao E, Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science. 2021;371(6532):eabb8255. https://doi.org/10.1126/science.abb8255.
  • Chen S, Li X, Wu J, Li J, Xiao M, Yang Y, et al. Plumula Nelumbinis: a review of traditional uses, phytochemistry, pharmacology, pharmacokinetics and safety. J Ethnopharmacol. 2021;266:113429. https://doi.org/10.1016/j.jep.2020.113429.
  • Kim ES, Weon JB, Yun BR, Lee J, Eom MR, Oh KH, Ma CJ. Cognitive enhancing and neuroprotective effect of the embryo of the Nelumbo nucifera seed. Evid Based Complement Alternat Med. 2014;2014:869831. https://doi.org/10.1155/2014/869831.
  • Jung HA, Karki S, Kim JH, Choi JS. BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Arch Pharm Res. 2015;38(6):1178–87. https://doi.org/10.1007/s12272-014-0492-4.
  • Tang B, Zeng W, Song LL, Wang HM, Qu LQ, Lo HH, et al. Extracellular vesicle delivery of neferine for the attenuation of neurodegenerative disease proteins and motor deficit in an Alzheimer's disease mouse model. Pharmaceuticals. 2022;15(1):83. https://doi.org/10.3390/ph15010083.
  • Wu XL, Deng MZ, Gao ZJ, Dang YY, Li YC, Li CW. Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress. Int Immunopharmacol. 2020;84:106559. https://doi.org/10.1016/j.intimp.2020.106559.
  • Jung HA, Jin SE, Choi RJ, Kim DH, Kim YS, Ryu JH, et al. Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life Sci. 2010;87(13–14):420–30. https://doi.org/10.1016/j.lfs.2010.08.005.
  • Wu C, Chen J, Yang R, Duan F, Li S, Chen X. Mitochondrial protective effect of neferine through the modulation of nuclear factor erythroid 2-related factor 2 signalling in ischaemic stroke. Br J Pharmacol. 2019;176(3):400–15. https://doi.org/10.1111/bph.14537.
  • Meng XL, Zheng LC, Liu J, Gao CC, Qiu MC, Liu YY, et al. Inhibitory effects of three bisbenzylisoquinoline alkaloids on lipopolysaccharide-induced microglial activation. RSC Adv. 2017;7(30):18347–57. https://doi.org/10.1039/c7ra01882g.
  • Meng X, Liu S, Xue J, Gou J, Wang D, Liu H, et al. Protective effects of liensinine, isoliensinine, and neferine on PC12 cells injured by amyloid-β. J Food Biochem. 2022;00:e14303. https://doi.org/10.1111/jfbc.14303.
  • O'Day DH, Eshak K, Myre MA. Calmodulin binding proteins and Alzheimer's disease. J Alzheimers Dis. 2015;46(3):553–69. https://doi.org/10.3233/JAD-142772.
  • Yamamoto H, Yamauchi E, Taniguchi H, Ono T, Miyamoto E. Phosphorylation of microtubule-associated protein tau by Ca2+/calmodulin-dependent protein kinase II in its tubulin binding sites. Arch Biochem Biophys. 2002;408(2):255–62. https://doi.org/10.1016/s0003-9861(02)00556-8.
  • Hu ZY, Chen SL, Hao ZG, Huang WL, Peng SX. Benzylisoquinoline compounds inhibit the ability of calmodulin to activate cyclic nucleotide phosphodiesterase. Cell Signal. 1989;1(2):181–5. https://doi.org/10.1016/0898-6568(89)90008-9.
  • Xiao JH, Zhang YL, Feng XL, Wang JL, Qian JQ. Effects of isoliensinine on angiotensin II-induced proliferation of porcine coronary arterial smooth muscle cells. J Asian Nat Prod Res. 2006;8(3):209–16. https://doi.org/10.1080/1028602042000325609.
  • Meng XL, Chen ML, Chen CL, Gao CC, Li C, Wang D, et al. Bisbenzylisoquinoline alkaloids of lotus (Nelumbo nucifera Gaertn.) seed embryo inhibit lipopolysaccharide-induced macrophage activation via suppression of Ca2+-CaM/CaMKII pathway. Food Agric Immunol. 2019;30(1):878–96. https://doi.org/10.1080/09540105.2019.1638889.
  • Chen Y, Zhao S, Fan Z, Li Z, Zhu Y, Shen T, et al. Metformin attenuates plaque-associated tau pathology and reduces amyloid-β burden in APP/PS1 mice. Alzheimers Res Ther. 2021;13(1):40. https://doi.org/10.1186/s13195-020-00761-9.
  • Hao F, Feng Y. Cannabidiol (CBD) enhanced the hippocampal immune response and autophagy of APP/PS1 Alzheimer's mice uncovered by RNA-seq. Life Sci. 2021;264:118624. https://doi.org/10.1016/j.lfs.2020.118624.
  • Guo P, Zeng M, Wang S, Cao B, Liu M, Zhang Y, et al. Eriodictyol and homoeriodictyol improve memory impairment in Aβ25-35-induced mice by inhibiting the NLRP3 inflammasome. Molecules. 2022;27(8):2488. https://doi.org/10.3390/molecules27082488.
  • Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712–6. https://doi.org/10.1126/science.aad8373.
  • Crapser JD, Spangenberg EE, Barahona RA, Arreola MA, Hohsfield LA, Green KN. Microglia facilitate loss of perineuronal nets in the Alzheimer's disease brain. EBioMedicine. 2020;58:102919. https://doi.org/10.1016/j.ebiom.2020.102919.
  • Chen X, Drew J, Berney W, Lei W. Neuroprotective natural products for Alzheimer's disease. Cells. 2021;10(6):1309. https://doi.org/10.3390/cells10061309.
  • Zhu JJ, Yu BY, Huang XK, He MZ, Chen BW, Chen TT, et al. Neferine protects against hypoxic-ischemic brain damage in neonatal rats by suppressing NLRP3-mediated inflammasome activation. Oxid Med Cell Longev. 2021;2021:6654954. https://doi.org/10.1155/2021/6654954.
  • Mozolewski P, Jeziorek M, Schuster CM, Bading H, Frost B, Dobrowolski R. The role of nuclear Ca2+ in maintaining neuronal homeostasis and brain health. J Cell Sci. 2021;134(8):jcs254904. https://doi.org/10.1242/jcs.254904.
  • Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME. Tau protein aggregation is associated with cellular senescence in the brain. Aging cell. 2018;17(6):e12840. https://doi.org/10.1111/acel.12840.
  • O'Day DH. Calmodulin binding proteins and Alzheimer's disease: Biomarkers, regulatory enzymes and receptors that are regulated by calmodulin. Int J Mol Sci. 2020;21(19):7344. https://doi.org/10.3390/ijms21197344.
  • Li X, Bo H, Zhang XC, Hartsuck JA, Tang J. Predicting memapsin 2 (β-secretase) hydrolytic activity. Protein Sci. 2010;19(11):2175–85. https://doi.org/10.1002/pro.502.
  • Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci. 2005;25(50):11693–709. https://doi.org/10.1523/JNEUROSCI.2766-05.2005.
  • Canobbio I, Catricalà S, Balduini C, Torti M. Calmodulin regulates the non-amyloidogenic metabolism of amyloid precursor protein in platelets. Biochim Biophys Acta. 2011;1813(3):500–6. https://doi.org/10.1016/j.bbamcr.2010.12.002.
  • Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's disease: The role of microglia in brain homeostasis and proteopathy. Front Neurosci. 2017;11:680. https://doi.org/10.3389/fnins.2017.00680.
  • Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45. https://doi.org/10.1146/annurev.immunol.021908.132528.
  • He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L, et al. Amyloid-β plaques enhance Alzheimer's brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med. 2018;24(1):29–38. https://doi.org/10.1038/nm.4443.
  • Lee S, Youn K, Jun M. Major compounds of red ginseng oil attenuate Aβ25-35-induced neuronal apoptosis and inflammation by modulating MAPK/NF-κB pathway. Food Funct. 2018;9(8):4122–34. https://doi.org/10.1039/c8fo00795k.
  • Corbacho I, Berrocal M, Török K, Mata AM, Gutierrez-Merino C. High affinity binding of amyloid β-peptide to calmodulin: Structural and functional implications. Biochem Biophys Res Commun. 2017;486(4):992–7. https://doi.org/10.1016/j.bbrc.2017.03.151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.