Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 27, 2024 - Issue 3
483
Views
7
CrossRef citations to date
0
Altmetric
Review

Neuroprotective properties of Betulin, Betulinic acid, and Ursolic acid as triterpenoids derivatives: a comprehensive review of mechanistic studies

, , , , , & show all

References

  • Mendes VIS, Bartholomeusz GA, Ayres M, Gandhi V, Salvador JAR. Synthesis and cytotoxic activity of novel A-ring cleaved ursolic acid derivatives in human non-small cell lung cancer cells. Eur J Med Chem. 2016;123:317–31.
  • Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A. Triterpene biosynthesis in plants. Annu Rev Plant Biol. 2014;65:225–57.
  • Feng XM, Su XL. Anticancer effect of ursolic acid via mitochondria-dependent pathways. Oncol Lett. 2019;17(6):4761–7.
  • Baliga MS, Shivashankara AR, Venkatesh S, Bhat HP, Palatty PL, Bhandari G, et al. Chapter 7 – Phytochemicals in the prevention of ethanol-induced hepatotoxicity: a revisit. In: Watson RR, Preedy VR, editors. Dietary interventions in liver disease. New York: Academic Press; 2019. p. 79–89.
  • Bishayee A, Ahmed S, Brankov N, Perloff M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci (Landmark Ed). 2011;16:980–96.
  • Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, et al. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv. 2020;38:107409.
  • Zeng A-Q, Yu Y, Yao Y-Q, Yang F-F, Liao M, Song L-J, et al. Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models. Oncotarget. 2017;9(3):3794–804.
  • Laavola M, Haavikko R, Hämäläinen M, Leppänen T, Nieminen R, Alakurtti S, et al. Betulin derivatives effectively suppress inflammation in vitro and in vivo. J Nat Prod. 2016;79(2):274–80.
  • Chen Z, Liu Q, Zhu Z, Xiang F, Zhang M, Wu R, et al. Ursolic acid protects against proliferation and inflammatory response in LPS-treated gastric tumour model and cells by inhibiting NLRP3 inflammasome activation. Cancer Manag Res. 2020;12:8413–24.
  • Chen Y, Sit SY, Chen J, Swidorski JJ, Liu Z, Sin N, et al. The design, synthesis and structure-activity relationships associated with C28 amine-based betulinic acid derivatives as inhibitors of HIV-1 maturation. Bioorg Med Chem Lett. 2018;28(9):1550–7.
  • Chaniad P, Sudsai T, Septama AW, Chukaew A, Tewtrakul S. Evaluation of anti-HIV-1 integrase and anti-inflammatory activities of compounds from Betula alnoides Buch-Ham. Adv Pharmacol Sci. 2019;2019:2573965.
  • Halder A, Shukla D, Das S, Roy P, Mukherjee A, Saha B. Lactoferrin-modified Betulinic acid-loaded PLGA nanoparticles are strong anti-leishmanials. Cytokine. 2018;110:412–5.
  • Jesus JA, Lago JH, Laurenti MD, Yamamoto ES, Passero LF. Antimicrobial activity of oleanolic and ursolic acids: an update. Evid Based Complement Alternat Med. 2015;2015:620472.
  • Prados ME, Correa-Sáez A, Unciti-Broceta JD, Garrido-Rodríguez M, Jimenez-Jimenez C, Mazzone M, et al. Betulinic acid hydroxamate is neuroprotective and induces protein phosphatase 2A-dependent HIF-1α stabilization and post-transcriptional dephosphorylation of Prolyl Hydrolase 2. Neurotherapeutics. 2021;18(3):1849–61.
  • Kaundal M, Deshmukh R, Akhtar M. Protective effect of betulinic acid against intracerebroventricular streptozotocin induced cognitive impairment and neuronal damage in rats: possible neurotransmitters and neuroinflammatory mechanism. Pharmacol Rep. 2018;70(3):540–8.
  • Salau VF, Erukainure OL, Ayeni G, Ibeji CU, Islam MS. Modulatory effect of ursolic acid on neurodegenerative activities in oxidative brain injury: an ex vivo study. J Food Biochem. 2021;45(2):e13597.
  • Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118.
  • Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration. Embo J. 2017;36(11):1474–92.
  • Hosseini M, Mohammadpour T, Karami R, Rajaei Z, Reza Sadeghnia H, Soukhtanloo M. Effects of the hydro-alcoholic extract of Nigella sativa on scopolamine-induced spatial memory impairment in rats and its possible mechanism. Chin J Integr Med. 2015;21(6):438–44.
  • Mahmoudi T, Lorigooini Z, Rafieian-kopaei M, Arabi M, Rabiei Z, Bijad E, et al. Effect of Curcuma zedoaria hydro-alcoholic extract on learning, memory deficits and oxidative damage of brain tissue following seizures induced by pentylenetetrazole in rat. Behav Brain Funct. 2020;16(1):7.
  • Solati K, Rabiei Z, Asgharzade S, Amini-Khoei H, Hassanpour A, Abbasiyan Z, et al. The effect of pretreatment with hydroalcoholic extract of Alpinia officinarum rhizome on seizure severity and memory impairment in pentylenetetrazol-induced kindling model of seizure in rat. AIMS Neurosci. 2019;6(3):128–45.
  • Lorigooini Z, Boroujeni SN, Sayyadi-Shahraki M, Rahimi-Madiseh M, Bijad E, Amini-Khoei H. Limonene through attenuation of neuroinflammation and nitrite level exerts antidepressant-like effect on mouse model of maternal separation stress. Behav Neurol. 2021;2021:8817309.
  • Arabi M, Nasab SH, Lorigooini Z, Boroujeni SN, Mortazavi SM, Anjomshoa M, et al. Auraptene exerts protective effects on maternal separation stress-induced changes in behavior, hippocampus, heart and serum of mice. Int Immunopharmacol. 2021;93:107436.
  • Cavalcante BRR, Aragão-França LS, Sampaio GLA, Nonaka CKV, Oliveira MS, Campos GS, et al. Betulinic acid exerts cytoprotective activity on Zika virus-infected neural progenitor cells. Front Cell Infect Microbiol. 2020;10:558324.
  • Wang D, Chen P, Chen L, Zeng F, Zang R, Liu H, et al. Betulinic acid protects the neuronal damage in new born rats from isoflurane-induced apoptosis in the developing brain by blocking FASL-FAS signaling pathway. Biomed Pharmacother. 2017;95:1631–5.
  • Zhang Y, Li X, Ciric B, Curtis MT, Chen WJ, Rostami A, et al. A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Proc Natl Acad Sci U S A. 2020;117(16):9082–93.
  • Seo DY, Lee SR, Heo J-W, No M-H, Rhee BD, Ko KS, et al. Ursolic acid in health and disease. Korean J Physiol Pharmacol. 2018;22(3):235–48.
  • Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. Environ Sci Pollut Res Int. 2021;28(6):6349–73.
  • Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763.
  • Peng J, Lv YC, He PP, Tang YY, Xie W, Liu XY, et al. Betulinic acid downregulates expression of oxidative stress-induced lipoprotein lipase via the PKC/ERK/c-Fos pathway in RAW264.7 macrophages. Biochimie. 2015;119:192–203.
  • Lingaraju MC, Pathak NN, Begum J, Balaganur V, Ramachandra HD, Bhat RA, et al. Betulinic acid attenuates renal oxidative stress and inflammation in experimental model of murine polymicrobial sepsis. Eur J Pharm Sci. 2015;70:12–21.
  • Habtemariam S. Antioxidant and anti-inflammatory mechanisms of neuroprotection by ursolic acid: addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression. Oxid Med Cell Longev. 2019;2019:8512048.
  • Chen Y, Jiang W, Chen Y, Chen X-L, Chen W, Li F, et al. Protective effect of betulinic acid for treating unpredictable chronic mild stress-induced depression in mice by inhibiting brain RIP 140 activation; 2017.
  • Planchard MS, Samel MA, Kumar A, Rangachari V. The natural product betulinic acid rapidly promotes amyloid-β fibril formation at the expense of soluble oligomers. ACS Chem Neurosci. 2012;3(11):900–8.
  • Ramos-Hryb AB, Pazini FL, Kaster MP, Rodrigues ALS. Therapeutic potential of ursolic acid to manage neurodegenerative and psychiatric diseases. CNS Drugs. 2017;31(12):1029–41.
  • Grymel M, Zawojak M, Adamek J. Triphenylphosphonium analogues of betulin and betulinic acid with biological activity: a comprehensive review. J Nat Prod. 2019;82(6):1719–30.
  • Ríos JL, Máñez S. New pharmacological opportunities for betulinic acid. Planta Med. 2018;84(1):8–19.
  • Jäger S, Laszczyk MN, Scheffler A. A preliminary pharmacokinetic study of betulin, the main pentacyclic triterpene from extract of outer bark of birch (Betulae alba cortex). Molecules. 2008;13(12):3224–35.
  • Mullauer FB, van Bloois L, Daalhuisen JB, Ten Brink MS, Storm G, Medema JP, et al. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anticancer Drugs. 2011;22(3):223–33.
  • Saraswat B, Visen PK, Agarwal DP. Ursolic acid isolated from Eucalyptus tereticornis protects against ethanol toxicity in isolated rat hepatocytes. Phytother Res. 2000;14(3):163–6.
  • Kamsu G, Fodouop S, Tagne R, Kodjio N, Fakam A, Gatsing D. Evaluation of the acute and sub-chronic toxicity of the ethanolic extract of Curcuma longa (Zingiberaceae) in Wistar Albino rats. Mod Chem Appl. 2019;7(1):267.
  • Robinson S, Chapman K, Hudson S, Sparrow S, Spencer-Briggs D, Danks A, et al. Guidance on dose level selection for regulatory general toxicology studies for pharmaceuticals. London: NC3Rs/LASA; 2009.
  • Geerlofs L, He Z, Xiao S, Xiao Z-C. Repeated dose (90 days) oral toxicity study of ursolic acid in Han-Wistar rats. Toxicol Rep. 2020;7:610–23.
  • Wang XH, Zhou SY, Qian ZZ, Zhang HL, Qiu LH, Song Z, et al. Evaluation of toxicity and single-dose pharmacokinetics of intravenous ursolic acid liposomes in healthy adult volunteers and patients with advanced solid tumors. Expert Opin Drug Metab Toxicol. 2013;9(2):117–25.
  • Mishra V, Soren AD, Yadav AK. Toxicological evaluations of betulinic acid and ursolic acid; common constituents of Houttuynia cordata used as an anthelmintic by the Naga tribes in North-east India. Future J Pharm Sci. 2021;7(1):39.
  • Konan NA, Bacchi EM, Lincopan N, Varela SD, Varanda EA. Acute, subacute toxicity and genotoxic effect of a hydroethanolic extract of the cashew (Anacardium occidentale L.). J Ethnopharmacol. 2007;110(1):30–8.
  • You HJ, Choi CY, Kim JY, Park SJ, Hahm KS, Jeong HG. Ursolic acid enhances nitric oxide and tumor necrosis factor-alpha production via nuclear factor-kappaB activation in the resting macrophages. FEBS Lett. 2001;509(2):156–60.
  • Ikeda Y, Murakami A, Fujimura Y, Tachibana H, Yamada K, Masuda D, et al. Aggregated ursolic acid, a natural triterpenoid, induces IL-1beta release from murine peritoneal macrophages: role of CD36. J Immunol. 2007;178(8):4854–64.
  • Ikeda Y, Murakami A, Nishizawa T, Ohigashi H. Ursolic acid enhances cyclooxygenases and tumor necrosis factor-alpha expression in mouse skin. Biosci Biotechnol Biochem. 2006;70(4):1033–7.
  • Wüpper S, Fischer A, Lüersen K, Lucius R, Okamoto H, Ishida Y, et al. High dietary kuding tea extract supplementation induces hepatic xenobiotic-metabolizing enzymes-A 6-week feeding study in mice. Nutrients. 2019;12(1):40.
  • Shuang G, Jing-bo* L, Jing L. Acute and genetic toxicity of ursolic acid extract from Ledum pulastre L. Food Science. 2009;30(13):250–2.
  • Santos RC, Salvador JA, Marín S, Cascante M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg Med Chem. 2009;17(17):6241–50.
  • Alakurtti S, Mäkelä T, Koskimies S, Yli-Kauhaluoma J. Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci. 2006;29(1):1–13.
  • Zhang WD, Jin MM, Jiang HH, Yang JX, Wang Q, Du YF, et al. Study on the metabolites of betulinic acid in vivo and in vitro by ultra high performance liquid chromatography with time-of-flight mass spectrometry. J Sep Sci. 2019;42(2):628–35.
  • Drayer DE. Pharmacologically active drug metabolites: therapeutic and toxic activities, plasma and urine data in man, accumulation in renal failure. Clin Pharmacokinet. 1976;1(6):426–43.
  • Fura A. Role of pharmacologically active metabolites in drug discovery and development. Drug Discov Today. 2006;11(3-4):133–42.
  • Pozharitskaya ON, Karlina MV, Shikov AN, Kosman VM, Makarov VG, Casals E, et al. Pharmacokinetics and tissue disposition of nanosystem-entrapped betulin after endotracheal administration to rats. Eur J Drug Metab Pharmacokinet. 2017;42(2):327–32.
  • Hu Z, Wang Z, Luo S, James MO, Wang Y. Phase II metabolism of betulin by rat and human UDP-glucuronosyltransferases and sulfotransferases. Chem Biol Interact. 2019;302:190–5.
  • Zhang W, Jiang H, Jin M, Wang Q, Sun Q, Du Y, et al. UHPLC-Q-TOF-MS/MS based screening and identification of the metabolites in vivo after oral administration of betulin. Fitoterapia. 2018;127:29–41.
  • Godugu C, Patel AR, Doddapaneni R, Somagoni J, Singh M. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS One. 2014;9(3):e89919.
  • Udeani GO, Zhao GM, Geun Shin Y, Cooke BP, Graham J, Beecher CW, et al. Pharmacokinetics and tissue distribution of betulinic acid in CD-1 mice. Biopharm Drug Dispos. 1999;20(8):379–83.
  • Cheng X, Shin YG, Levine BS, Smith AC, Tomaszewski JE, van Breemen RB. Quantitative analysis of betulinic acid in mouse, rat and dog plasma using electrospray liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2003;17(18):2089–92.
  • Cichewicz RH, Kouzi SA. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev. 2004;24(1):90–114.
  • Eloy J, Saraiva J, Albuquerque S, Marchetti J. Preparation, characterization and evaluation of the in vivo trypanocidal activity of ursolic acid-loaded solid dispersion with poloxamer 407 and sodium caprate. Braz J Pharm Sci. 2015;51:101–9.
  • Chen Q, Luo S, Zhang Y, Chen Z. Development of a liquid chromatography-mass spectrometry method for the determination of ursolic acid in rat plasma and tissue: application to the pharmacokinetic and tissue distribution study. Anal Bioanal Chem. 2011;399(8):2877–84.
  • Jinhua W. Ursolic acid: pharmacokinetics process in vitro and in vivo, a mini review. Arch Pharm (Weinheim). 2019;352(3):e1800222.
  • Hu X, Shen Y, Yang S, Lei W, Luo C, Hou Y, et al. Metabolite identification of ursolic acid in mouse plasma and urine after oral administration by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. RSC Adv. 2018;8(12):6532–9.
  • Xu H, Ren X, Du Y, Zhang L, Li T, Ge Y, et al. [Study on absorption kinetics of betulic acid in rat’s intestines]. Zhongguo Zhong Yao Za Zhi. 2012;37(3):377–80.
  • Bravo-Alfaro DA, Ochoa-Rodríguez LR, Villaseñor-Ortega F, Luna-Barcenas G, García HS. Self-nanoemulsifying drug delivery system (SNEDDS) improves the oral bioavailability of betulinic acid. J Mol Liq. 2022;364:119946.
  • Soica C, Danciu C, Savoiu-Balint G, Borcan F, Ambrus R, Zupko I, et al. Betulinic acid in complex with a gamma-cyclodextrin derivative decreases proliferation and in vivo tumor development of non-metastatic and metastatic B164A5 cells. Int J Mol Sci. 2014;15(5):8235–55.
  • Sun YF, Song CK, Viernstein H, Unger F, Liang ZS. Apoptosis of human breast cancer cells induced by microencapsulated betulinic acid from sour jujube fruits through the mitochondria transduction pathway. Food Chem. 2013;138(2-3):1998–2007.
  • Dehelean CA, Feflea S, Ganta S, Amiji M. Anti-angiogenic effects of betulinic acid administered in nanoemulsion formulation using chorioallantoic membrane assay. J Biomed Nanotechnol. 2011;7(2):317–24.
  • Ren C, Kong D, Ning C, Xing H, Cheng Y, Zhang Y, et al. Improved pharmacokinetic characteristics of ursolic acid in rats following intratracheal instillation and nose-only inhalation exposure. J Pharm Sci. 2021;110(2):905–13.
  • Ge Z-Q, Du X-Y, Huang X, Qiao B. Enhanced oral bioavailability of ursolic acid nanoparticles via antisolvent precipitation with TPGS1000 as a stabilizer. J Drug Deliv Sci Technol. 2015;29:210–17.
  • Wang L, Yin Q, Liu C, Tang Y, Sun C, Zhuang J. Nanoformulations of ursolic acid: a modern natural anticancer molecule. Front Pharmacol. 2021;12:706121.
  • Shabani S, Rabiei Z, Amini-Khoei H. Exploring the multifaceted neuroprotective actions of gallic acid: a review. Int J Food Prop. 2020;23(1):736–52.
  • Samsonowicz M, Kalinowska M, Gryko K. Enhanced antioxidant activity of ursolic acid by complexation with Copper (II): experimental and theoretical study. Materials (Basel). 2021;14(2):264.
  • Khlebnicova TS, Piven YA, Lakhvich FA, Sorokina IV, Frolova TS, Baev DS, et al. Betulinic acid-azaprostanoid hybrids: synthesis and pharmacological evaluation as anti-inflammatory agents. Antiinflamm Antiallergy Agents Med Chem. 2020;19(3):254–67.
  • Cargnin ST, Gnoatto SB. Ursolic acid from apple pomace and traditional plants: a valuable triterpenoid with functional properties. Food Chem. 2017;220:477–89.
  • Ikeda Y, Murakami A, Ohigashi H. Ursolic acid promotes the release of macrophage migration inhibitory factor via ERK2 activation in resting mouse macrophages. Biochem Pharmacol. 2005;70(10):1497–505.
  • Shabani S, Sarkaki A, Ali Mard S, Ahangarpour A, Khorsandi L, Farbood Y. Central and peripheral administrations of levothyroxine improved memory performance and amplified brain electrical activity in the rat model of Alzheimer’s disease. Neuropeptides. 2016;59:111–6.
  • Shabani S, Farbood Y, Mard SA, Sarkaki A, Ahangarpour A, Khorsandi L. The regulation of pituitary-thyroid abnormalities by peripheral administration of levothyroxine increased brain-derived neurotrophic factor and reelin protein expression in an animal model of Alzheimer’s disease. Can J Physiol Pharmacol. 2018;96(3):275–80.
  • Zhang C, Wang X, Cui J, Li X, Zhang Y, Wang X, et al. Synthetic analogues of betulinic acid as potent inhibitors of PS1/BACE1 interaction to reduce Aβ generation. Chin J Chem. 2017;35(1):103–12.
  • Planchard MS. An investigation on the interaction of various natural products with the amyloid-β peptide; betulinic acid causes rapid amyloid-β fibril formation at the expense of soluble oligomers. Honors Theses. 2012;52. Available from: https://aquila.usm.edu/honors_theses/52.
  • Navabi SP, Sarkaki A, Mansouri E, Badavi M, Ghadiri A, Farbood Y. The effects of betulinic acid on neurobehavioral activity, electrophysiology and histological changes in an animal model of the Alzheimer’s disease. Behav Brain Res. 2018;337:99–106.
  • Huang L, Ho P, Chen CH. Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Lett. 2007;581(25):4955–9.
  • Wilkinson K, Boyd JD, Glicksman M, Moore KJ, El Khoury J. A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. J Biol Chem. 2011;286(40):34914–22.
  • Mirza FJ, Amber S, Sumera HD, Ahmed T, Zahid S. Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ1-42-induced mouse model of Alzheimer’s disease. Phytomedicine. 2021;83:153490.
  • Martinez A, Castro A. Novel cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs. 2006;15(1):1–12.
  • Ruhal P, Dhingra D. Ameliorative effect of Betulinic acid on ageing and scopolamine-induced learning and memory impairment in rats. Asian J Pharm Pharmacol. 2018;4:825–41.
  • Lipton SA. The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Curr Alzheimer Res. 2005;2(2):155–65.
  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 2007;27(11):2866–75.
  • Sarkaki A, Farbood Y, Badavi M, Ghadiri A, Ghasemi Dehcheshmeh M, Mansouri E, et al. The protective effect of betulinic acid on microvascular responsivity and protein expression in alzheimer disease induced by cerebral micro-injection of beta-amyloid and streptozotocin. Microcirculation. 2018;25(8):e12503.
  • Tang FR, Loke WK, Wong P, Khoo BC. Radioprotective effect of ursolic acid in radiation-induced impairment of neurogenesis, learning and memory in adolescent BALB/c mouse. Physiol Behav. 2017;175:37–46.
  • Cho N, Kim HW, Lee HK, Jeon BJ, Sung SH. Ameliorative effect of betulin from Betula platyphylla bark on scopolamine-induced amnesic mice. Biosci Biotechnol Biochem. 2016;80(1):166–71.
  • Ma C, Long H. Protective effect of betulin on cognitive decline in streptozotocin (STZ)-induced diabetic rats. Neurotoxicology. 2016;57:104–11.
  • Liang W, Zhao X, Feng J, Song F, Pan Y. Ursolic acid attenuates beta-amyloid-induced memory impairment in mice. Arq Neuropsiquiatr. 2016;74(6):482–8.
  • Wu D-m, Lu J, Zhang Y-q, Zheng Y-l, Hu B, Cheng W, et al. Ursolic acid improves domoic acid-induced cognitive deficits in mice. Toxicol Appl Pharmacol. 2013;271(2):127–36.
  • Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, et al. Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IκB kinase β/nuclear factor-κB-mediated inflammatory pathways in mice. Brain Behav Immun. 2011;25(8):1658–67.
  • Wang YJ, Lu J, Wu DM, Zheng ZH, Zheng YL, Wang XH, et al. Ursolic acid attenuates lipopolysaccharide-induced cognitive deficits in mouse brain through suppressing p38/NF-κB mediated inflammatory pathways. Neurobiol Learn Mem. 2011;96(2):156–65.
  • Lu J, Zheng YL, Wu DM, Luo L, Sun DX, Shan Q. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol. 2007;74(7):1078–90.
  • Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27(1):27–42.
  • Hirsch EC, Standaert DG. Ten unsolved questions about neuroinflammation in Parkinson’s disease. Mov Disord. 2021;36(1):16–24.
  • Lööv C, Scherzer CR, Hyman BT, Breakefield XO, Ingelsson M. α-Synuclein in extracellular vesicles: functional implications and diagnostic opportunities. Cell Mol Neurobiol. 2016;36(3):437–48.
  • Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461–91.
  • Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323(6):548–60.
  • Rai SN, Zahra W, Singh SS, Birla H, Keswani C, Dilnashin H, et al. Anti-inflammatory activity of ursolic acid in MPTP-induced Parkinsonian mouse model. Neurotox Res. 2019;36(3):452–62.
  • Tsai CW, Tsai RT, Liu SP, Chen CS, Tsai MC, Chien SH, et al. Neuroprotective effects of betulin in pharmacological and transgenic caenorhabditis elegans models of Parkinson’s disease. Cell Transplant. 2017;26(12):1903–18.
  • Killinger B, Shah M, Moszczynska A. Co-administration of betulinic acid and methamphetamine causes toxicity to dopaminergic and serotonergic nerve terminals in the striatum of late adolescent rats. J Neurochem. 2014;128(5):764–75.
  • Zhang QS, Heng Y, Yuan YH, Chen NH. Pathological α-synuclein exacerbates the progression of Parkinson’s disease through microglial activation. Toxicol Lett. 2017;265:30–7.
  • Zahra W, Rai SN, Birla H, Singh SS, Rathore AS, Dilnashin H, et al. Neuroprotection of rotenone-induced Parkinsonism by ursolic acid in PD mouse model. CNS Neurol Disord Drug Targets. 2020;19(7):527–40.
  • Wright JA, McHugh PC, Pan S, Cunningham A, Brown DR. Counter-regulation of alpha- and beta-synuclein expression at the transcriptional level. Mol Cell Neurosci. 2013;57:33–41.
  • Chuang YC, Chen SD, Hsu CY, Chen SF, Chen NC, Jou SB. Resveratrol promotes mitochondrial biogenesis and protects against seizure-induced neuronal cell damage in the hippocampus following status epilepticus by activation of the PGC-1α signaling pathway. Int J Mol Sci. 2019;20(4):998.
  • Peshattiwar V, Muke S, Kaikini A, Bagle S, Dighe V, Sathaye S. Mechanistic evaluation of Ursolic acid against rotenone induced Parkinson’s disease- emphasizing the role of mitochondrial biogenesis. Brain Res Bull. 2020;160:150–61.
  • Rai SN, Yadav SK, Singh D, Singh SP. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model. J Chem Neuroanat. 2016;71:41–9.
  • Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007;87(1):179–97.
  • Wang Y, He Z, Deng S. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury. Drug Des Devel Ther. 2016;10:1663–74.
  • Li W, Sun K, Hu F, Chen L, Zhang X, Wang F, et al. Protective effects of natural compounds against oxidative stress in ischemic diseases and cancers via activating the Nrf2 signaling pathway: a mini review. J Biochem Mol Toxicol. 2021;35(3):e22658.
  • Woodruff TM, Thundyil J, Tang S-C, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011;6(1):11.
  • Wahlgren NG, Ahmed N. Neuroprotection in cerebral ischaemia: facts and fancies–the need for new approaches. Cerebrovasc Dis. 2004;17(Suppl 1):153–66.
  • Lu P, Zhang CC, Zhang XM, Li HG, Luo AL, Tian YK, et al. Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice. J Huazhong Univ Sci Technolog Med Sci. 2017;37(5):744–9.
  • Jiao S, Zhu H, He P, Teng J. Betulinic acid protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway. Biomed Pharmacother. 2016;84:1533–7.
  • Liao S, Apaijai N, Chattipakorn N, Chattipakorn SC. The possible roles of necroptosis during cerebral ischemia and ischemia / reperfusion injury. Arch Biochem Biophys. 2020;695:108629.
  • Lu Q, Xia N, Xu H, Guo L, Wenzel P, Daiber A, et al. Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress. Nitric Oxide. 2011;24(3):132–8.
  • Wang Y, Li L, Deng S, Liu F, He Z. Ursolic acid ameliorates inflammation in cerebral ischemia and reperfusion injury possibly via high mobility group Box 1/toll-like receptor 4/NFκB pathway. Front Neurol. 2018;9:253.
  • Li L, Zhang X, Cui L, Wang L, Liu H, Ji H, et al. Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res. 2013;1497:32–9.
  • Zhao Y, Shi X, Wang J, Mang J, Xu Z. Betulinic acid ameliorates cerebral injury in middle cerebral artery occlusion rats through regulating autophagy. ACS Chem Neurosci. 2021;12(15):2829–37.
  • Jiang W, Hao K. Protective action of betulinic acid on cerebral ischemia/reperfusion injury through inflammation and energy metabolic homeostasis. Appl Sci. 2020;10(7):2578.
  • Li J, Wang R-j, Zhang Y, Jia R, Zhao K, Zhang S, et al. Protective effect of ursolic acid on ischemic brain injury by regulating hypoxia-inducible factor 1-alpha; 2019.
  • Colla AR, Rosa JM, Cunha MP, Rodrigues AL. Anxiolytic-like effects of ursolic acid in mice. Eur J Pharmacol. 2015;758:171–6.
  • Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Bettio LE, et al. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem 2013;136(2):999–1005.
  • Kazmi I, Afzal M, Gupta G, Anwar F. Antiepileptic potential of ursolic acid stearoyl glucoside by GABA receptor stimulation. CNS Neurosci Ther. 2012;18(9):799–800.
  • Muceniece R, Saleniece K, Rumaks J, Krigere L, Dzirkale Z, Mezhapuke R, et al. Betulin binds to gamma-aminobutyric acid receptors and exerts anticonvulsant action in mice. Pharmacol Biochem Behav. 2008;90(4):712–6.
  • Blaževski J, Petković F, Momčilović M, Paschke R, Kaluđerović GN, Mostarica Stojković M, et al. Betulinic acid regulates generation of neuroinflammatory mediators responsible for tissue destruction in multiple sclerosis in vitro. Acta Pharmacol Sin. 2013;34(3):424–31.
  • Yamamoto S, Sakemoto C, Iwasa K, Maruyama K, Shimizu K, Yoshikawa K. Ursolic acid treatment suppresses cuprizone-induced demyelination and motor dysfunction via upregulation of IGF-1. J Pharmacol Sci. 2020;144(3):119–22.
  • Johnson ML, Robinson MM, Nair KS. Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab. 2013;24(5):247–56.
  • Bakhtiari N, Hosseinkhani S, Tashakor A, Hemmati R. Ursolic acid ameliorates aging-metabolic phenotype through promoting of skeletal muscle rejuvenation. Med Hypotheses. 2015;85(1):1–6.
  • Ding H, Wang H, Zhu L, Wei W. Ursolic acid ameliorates early brain injury after experimental traumatic brain injury in mice by activating the Nrf2 pathway. Neurochem Res. 2017;42(2):337–46.
  • Dash UC, Swain SK, Kanhar S, Banjare P, Roy PP, Dandapat J, et al. The modulatory role of prime identified compounds in Geophila repens in mitigating scopolamine-induced neurotoxicity in experimental rats of Alzheimer’s disease via attenuation of cholinesterase, β-secretase, MAPt levels and inhibition of oxidative stress imparts inflammation. J Ethnopharmacol. 2022;282:114637.
  • Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int J Mol Med. 2018;41(4):1817–25.
  • Ricciarelli R, Fedele E. cAMP, cGMP and amyloid β: three ideal partners for memory formation. Trends Neurosci. 2018;41(5):255–66.
  • Kaundal M, Zameer S, Najmi AK, Parvez S, Akhtar M. Betulinic acid, a natural PDE inhibitor restores hippocampal cAMP/cGMP and BDNF, improve cerebral blood flow and recover memory deficits in permanent BCCAO induced vascular dementia in rats. Eur J Pharmacol. 2018;832:56–66.
  • Cazarin CA, Dalmagro AP, Gonçalves AE, Boeing T, Silva L, Corrêa R, et al. Usnic acid enantiomers restore cognitive deficits and neurochemical alterations induced by Aβ1–42 in mice. Behav Brain Res. 2021;397:112945.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.