520
Views
23
CrossRef citations to date
0
Altmetric
Articles

Interface shear behaviours between recycled concrete aggregate and geogrids for pavement applications

, , , &
Pages 228-235 | Received 23 Aug 2017, Accepted 11 Mar 2018, Published online: 28 Mar 2018

References

  • Abu-Farsakh, M. , Coronel, J. , and Tao, M. , 2007. Effect of soil moisture content and dry density on cohesive soil-geosynthetic interactions using large directshear tests. Journal of Materials in Civil Engineering , 19 (7), 540–549. doi:10.1061/(ASCE)0899-1561(2007).
  • Alfaro, M.C. , Miura, N. , and Bergado, D.T. , 1995. Soil geogrid reinforcement interaction by pullout and direct shear tests. Geotechnical Testing Journal , 18 (2), 157–167.
  • Araujo, G.L.S. , Palmeira, E.M. , and Cunha, R.P. , 2009. Behaviour of geosynthetic-encased granular columns in porous collapsible soil. Geosynthetics International , 16 (6), 433–451.10.1680/gein.2009.16.6.433
  • Arulrajah, A. , et al. , 2009. Ground improvement techniques for railway embankments. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering , 162 (1), 3–14.
  • Arulrajah, A. , et al. , 2012. Geotechnical properties of recycled concrete aggregate in pavement subbase applications. Geotechnical Testing Journal , 35 (5), 1–9.
  • Arulrajah, A. , et al. , 2013. Geosynthetic applications in a high-speed railway: Case study. Proceedings of the Institution of Civil Engineers, Ground Improvement , UK.
  • Arulrajah, A. , et al. , 2013. Geotechnical performance of recycled glass-waste rock blends in footpath bases. Journal of Materials in Civil Engineering , 25, 653–661. doi:10.1061/(ASCE)MT.1943-5533.0000617.
  • Arulrajah, A. , et al. , 2013. Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. Journal of Materials in Civil Engineering , 25 (8), 1077–1088.10.1061/(ASCE)MT.1943-5533.0000652
  • Arulrajah, A. , et al. , 2013. Interface shear strength testing of geogrid-reinforced construction and demolition materials. Advances in Civil Engineering Materials , 2 (1), 189–200.
  • Arulrajah, A. , et al. 2014. Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials , 58, 245–257.10.1016/j.conbuildmat.2014.02.025
  • Arulrajah, A. , et al. , 2014. Recycled-glass blends in pavement base/subbase applications: laboratory and field evaluation. Journal of Materials in Civil Engineering , 26 (7), Article ID04014025.
  • Arulrajah, A. , Piratheepan, J. , and Disfani, M.M. 2014. Reclaimed Asphalt Pavement and Recycled Concrete Aggregate Blends in Pavement Subbases: Laboratory and Field Evaluation. Journal of Materials in Civil Engineering, ASCE , 26, 349–357.10.1061/(ASCE)MT.1943-5533.0000850
  • Arulrajah, A. , et al. , 2014. Evaluation of interface shear strength properties of geogrid-reinforced construction and demolition materials using a modified large-scale direct shear testing apparatus. Journal of Materials in Civil Engineering , 26 (5), 974–982.10.1061/(ASCE)MT.1943-5533.0000897
  • Arulrajah, A. , et al. , 2015. Evaluation of interface shear strength properties of geogrid reinforced foamed recycled glass using a large-scale direct shear testing apparatus. Advances in Materials Science and Engineering , 2015 (2015), Article ID235424.
  • Azam, A.M. and Cameron, D.A. 2013. Geotechnical properties of blends of recycled clay masonry and recycled concrete aggregates in unbound pavement construction. Journal of Materials in Civil Engineering , 25, 788–798.10.1061/(ASCE)MT.1943-5533.0000634
  • Disfani, M.M. , et al. , 2011 Recycled crushed glass in road work applications. Waste Management , 31 (11), 2341–2351.10.1016/j.wasman.2011.07.003
  • DOH, Standard No. DH-S 201/2544 , 2001. Standard of crusher rock base , Department of Highways, Thailand.
  • Edil, T. and Benson, C. , 1998. Geotechnics of industrial byproducts. In: C. Vipulanandan and D. Elton , ed. Recycled materials in geotechnical applications , ASCE Special Publication. p. 79.
  • Gabr, A. and Cameron, D. , 2012. Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering , 24 (6), 754–764.10.1061/(ASCE)MT.1943-5533.0000447
  • Han, B. , et al. , 2018. Laboratory investigation of particle size effects on the shear behavior of aggregate-geogrid interface. Construction and Building Materials , 158, 1015–1025.10.1016/j.conbuildmat.2017.10.045
  • Horpibulsuk, S. and Niramitkornburee, A. , 2010. Pullout resistance of bearing reinforcement embedded in sand. Soils and Foundations , 50 (2), 215–226.10.3208/sandf.50.215
  • Hoyos, L.R. , Puppala, A.J. , and Ordonez, C.A. , 2011. Characterization of cement-fiber-treated reclaimed asphalt pavement aggregates: preliminary investigation. Journal of Materials in Civil Engineering , 23 (7), 977–989.10.1061/(ASCE)MT.1943-5533.0000267
  • Indraratna, B. , Hussaini, S.K.K. , and Vinod, K.S. , 2012. On the shear behavior of ballast-geosynthetic interfaces. Geotechnical Testing Journal , 35 (2), 305–312.
  • Kazimierowicz, F.K. , 2007. Influence of geosynthetic reinforcement on the load-settlement characteristics of two-layer subgrade. Geotextiles and Geomembranes , 25 (6), 366–376.10.1016/j.geotexmem.2007.01.002
  • Kim, D. and Ha, S. , 2014. Effects of particle size on the shear behavior of coarse grained soils reinforced with geogrid. Materials , 7, 963–979.10.3390/ma7020963
  • Lee, K. and Manjunath, V.R. , 2000. Soil-geotextile interface friction by direct shear tests. Canadian Geotechnical Journal , 37 (1), 238–252.10.1139/t99-124
  • Ling, H.I. , Wang, J.P. , and Leshchinsky, D. , 2008. Cyclic behaviour of soil-structure interfaces associated with modular-block reinforced soil-retaining walls. Geosynthetics International , 15 (1), 14–21.10.1680/gein.2008.15.1.14
  • Liu, C.N. , Ho, Y.H. , and Huang, J.W. , 2009. Large scale direct shear tests of soil/PET-yarn geogrid interfaces. Geotextiles and Geomembranes , 27 (1), 19–30.10.1016/j.geotexmem.2008.03.002
  • Liu, C.N. , et al. , 2009. Behavior of geogrid-sand interface in direct shear mode. Journal of Geotechnical and Geoenvironmental Engineering , 135 (12), 1863–1871.10.1061/(ASCE)GT.1943-5606.0000150
  • McCartney, J.S. , Zornberg, J.G. , and Swan, R.H. Jr. , 2009. Analysis of a large database of gcl-geomembrane interface shear strength results. Journal of Geotechnical and Geoenvironmental Engineering , 135, (2), 209–223. doi:10.1061/(ASCE)1090-0241(2009)135:2(209).
  • Palmeira, E.M. , 2009. Soil-geosynthetic Interaction: modelling and analysis. Geotextiles and Geomembranes , 27 (5), 386–390.
  • Palmeira, E.M. and Antunes, L.G.S. , 2010. Large scale tests on geosynthetic reinforced unpaved roads subjected to surface maintenance. Geotextiles and Geomembranes , 28 (6), 547–558.10.1016/j.geotexmem.2010.03.002
  • Palmeira, E.M. , Beirigo, E.A. , and Gardoni, M.G. , 2010. Tailings-nonwoven geotextile filter compatibility in mining applications. Geotextiles and Geomembranes , 28 (2), 136–148.10.1016/j.geotexmem.2009.10.004
  • Poon, C.S. and Chan, D. , 2006. Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Construction and Building Materials , 20, 578–585.10.1016/j.conbuildmat.2005.01.045
  • Puppala, A.J. , Hoyos, L.R. , and Potturi, A.K. , 2011. Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates. Journal of Materials in Civil Engineering , 23 (7), 990–998.10.1061/(ASCE)MT.1943-5533.0000268
  • Sivakugan, N. and Das, B.M. , 2010. Geotechnical engineering: a practical problem solving approach . Fort Lauderdale, FL: J. Ross Publishing.
  • Sivakumar, V. , McKinley, J.D. , and Ferguson, D. , 2004. Reuse of construction waste: performance under repeated loading. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering , 157 (2), 91–96.10.1680/geng.2004.157.2.91
  • Sukmak, K. , et al. , 2016. Numerical parametric study on behavior of bearing reinforcement earth walls with different backfill material properties. Geosynthetics International , 23 (6), 435–451.10.1680/jgein.16.00008
  • Suksiripattanapong, C. , et al. , 2013. Pullout resistance of bearing reinforcement embedded in coarse-grained soils. Geotextiles and Geomembranes , 36, 44–54.10.1016/j.geotexmem.2012.10.008
  • Tatlisoz, N. , Edil, T.B. , and Benson, C.H. , 1998. Interaction between reinforcing geosynthetics and soil-tire chip mixtures. Journal of Geotechnical and Geoenvironmental Engineering , 124, (11), 1109–1119. doi:10.1061/(ASCE)1090-0241(1998)124:11(1109),1109-1119.
  • Udomchai, A. , et al. , 2017. Performance of the bearing reinforcement earth wall as a retaining structure in the Mae Moh mine. Geotextiles and Geomembranes, 45, 350–360. doi:10.1016/j.geotexmem.2017.04.007.
  • Vieira, C.S. and Pereira, P.M. , 2016. Interface shear properties of geosynthetics and construction and demolition waste from large-scale direct shear tests. Geosynthetics International , 23 (1), 62–70.10.1680/jgein.15.00030
  • Zekkos, D. , et al. , 2010. Large-scale direct shear testing of municipal solid waste. Waste Management , 30 (8–9), 1544–1555.10.1016/j.wasman.2010.01.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.